Numerical Approximation of Partial Differential Equations

Numerical Approximation of Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 551
Release :
ISBN-10 : 9783540852681
ISBN-13 : 3540852689
Rating : 4/5 (81 Downloads)

Synopsis Numerical Approximation of Partial Differential Equations by : Alfio Quarteroni

Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).

Numerical Approximation of Partial Differential Equations

Numerical Approximation of Partial Differential Equations
Author :
Publisher : Springer
Total Pages : 541
Release :
ISBN-10 : 9783319323541
ISBN-13 : 3319323547
Rating : 4/5 (41 Downloads)

Synopsis Numerical Approximation of Partial Differential Equations by : Sören Bartels

Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular applications including incompressible elasticity, thin elastic objects, electromagnetism, and fluid mechanics are addressed. The book includes theoretical problems and practical projects for all chapters, and an introduction to the implementation of finite element methods.

Partial Differential Equations: Modeling, Analysis and Numerical Approximation

Partial Differential Equations: Modeling, Analysis and Numerical Approximation
Author :
Publisher : Birkhäuser
Total Pages : 403
Release :
ISBN-10 : 9783319270678
ISBN-13 : 3319270672
Rating : 4/5 (78 Downloads)

Synopsis Partial Differential Equations: Modeling, Analysis and Numerical Approximation by : Hervé Le Dret

This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems.

Numerical Methods for Nonlinear Partial Differential Equations

Numerical Methods for Nonlinear Partial Differential Equations
Author :
Publisher : Springer
Total Pages : 394
Release :
ISBN-10 : 9783319137971
ISBN-13 : 3319137972
Rating : 4/5 (71 Downloads)

Synopsis Numerical Methods for Nonlinear Partial Differential Equations by : Sören Bartels

The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.

Numerical Approximation of Partial Differential Equations

Numerical Approximation of Partial Differential Equations
Author :
Publisher : Elsevier
Total Pages : 447
Release :
ISBN-10 : 9780080872445
ISBN-13 : 0080872441
Rating : 4/5 (45 Downloads)

Synopsis Numerical Approximation of Partial Differential Equations by : E.L. Ortiz

This selection of papers is concerned with problems arising in the numerical solution of differential equations, with an emphasis on partial differential equations. There is a balance between theoretical studies of approximation processes, the analysis of specific numerical techniques and the discussion of their application to concrete problems relevant to engineering and science. Special consideration has been given to innovative numerical techniques and to the treatment of three-dimensional and singular problems. These topics are discussed in several of the invited papers.The contributed papers are divided into five parts: techniques of approximation theory which are basic to the numerical treatment of differential equations; numerical techniques based on discrete processes; innovative methods based on polynomial and rational approximation; variational inequalities, conformal transformation and asymptotic techniques; and applications of differential equations to problems in science and engineering.

Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations
Author :
Publisher : Academic Press
Total Pages : 484
Release :
ISBN-10 : 9780128035047
ISBN-13 : 0128035048
Rating : 4/5 (47 Downloads)

Synopsis Numerical Methods for Partial Differential Equations by : Sandip Mazumder

Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. - Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry - Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes - Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives

Numerical Partial Differential Equations: Finite Difference Methods

Numerical Partial Differential Equations: Finite Difference Methods
Author :
Publisher : Springer Science & Business Media
Total Pages : 451
Release :
ISBN-10 : 9781489972781
ISBN-13 : 1489972781
Rating : 4/5 (81 Downloads)

Synopsis Numerical Partial Differential Equations: Finite Difference Methods by : J.W. Thomas

What makes this book stand out from the competition is that it is more computational. Once done with both volumes, readers will have the tools to attack a wider variety of problems than those worked out in the competitors' books. The author stresses the use of technology throughout the text, allowing students to utilize it as much as possible.

Numerical Approximation Methods

Numerical Approximation Methods
Author :
Publisher : Springer Science & Business Media
Total Pages : 493
Release :
ISBN-10 : 9781441998361
ISBN-13 : 1441998365
Rating : 4/5 (61 Downloads)

Synopsis Numerical Approximation Methods by : Harold Cohen

This book presents numerical and other approximation techniques for solving various types of mathematical problems that cannot be solved analytically. In addition to well known methods, it contains some non-standard approximation techniques that are now formally collected as well as original methods developed by the author that do not appear in the literature. This book contains an extensive treatment of approximate solutions to various types of integral equations, a topic that is not often discussed in detail. There are detailed analyses of ordinary and partial differential equations and descriptions of methods for estimating the values of integrals that are presented in a level of detail that will suggest techniques that will be useful for developing methods for approximating solutions to problems outside of this text. The book is intended for researchers who must approximate solutions to problems that cannot be solved analytically. It is also appropriate for students taking courses in numerical approximation techniques.

Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations
Author :
Publisher : SIAM
Total Pages : 356
Release :
ISBN-10 : 0898717833
ISBN-13 : 9780898717839
Rating : 4/5 (33 Downloads)

Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Numerical Analysis of Partial Differential Equations

Numerical Analysis of Partial Differential Equations
Author :
Publisher : John Wiley & Sons
Total Pages : 506
Release :
ISBN-10 : 9781118111116
ISBN-13 : 1118111117
Rating : 4/5 (16 Downloads)

Synopsis Numerical Analysis of Partial Differential Equations by : S. H, Lui

A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.