Numerical Initial Value Problems In Ordinary Differential Equations
Download Numerical Initial Value Problems In Ordinary Differential Equations full books in PDF, epub, and Kindle. Read online free Numerical Initial Value Problems In Ordinary Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Charles William Gear |
Publisher |
: Prentice Hall |
Total Pages |
: 280 |
Release |
: 1971 |
ISBN-10 |
: UCSD:31822014156111 |
ISBN-13 |
: |
Rating |
: 4/5 (11 Downloads) |
Synopsis Numerical Initial Value Problems in Ordinary Differential Equations by : Charles William Gear
Introduction -- Higher order one-step methods -- Systems of equations and equations of order greater than one -- Convergence, error bounds, and error estimates for one-step methods -- The choice of step size and order -- Extrapolation methods -- Multivalue or multistep methods - introduction -- General multistep methods, order and stability -- Multivalue methods -- Existence, convergence, and error estimates for multivalue methods -- Special methods for special problems -- Choosing a method.
Author |
: David F. Griffiths |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 274 |
Release |
: 2010-11-11 |
ISBN-10 |
: 9780857291486 |
ISBN-13 |
: 0857291483 |
Rating |
: 4/5 (86 Downloads) |
Synopsis Numerical Methods for Ordinary Differential Equations by : David F. Griffiths
Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com
Author |
: Simeon Ola Fatunla |
Publisher |
: |
Total Pages |
: 320 |
Release |
: 1988 |
ISBN-10 |
: UOM:39015015702114 |
ISBN-13 |
: |
Rating |
: 4/5 (14 Downloads) |
Synopsis Numerical Methods for Initial Value Problems in Ordinary Differential Equations by : Simeon Ola Fatunla
Author |
: Uri M. Ascher |
Publisher |
: SIAM |
Total Pages |
: 620 |
Release |
: 1994-12-01 |
ISBN-10 |
: 1611971233 |
ISBN-13 |
: 9781611971231 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Numerical Solution of Boundary Value Problems for Ordinary Differential Equations by : Uri M. Ascher
This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.
Author |
: K. E. Brenan |
Publisher |
: SIAM |
Total Pages |
: 268 |
Release |
: 1996-01-01 |
ISBN-10 |
: 1611971225 |
ISBN-13 |
: 9781611971224 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Numerical Solution of Initial-value Problems in Differential-algebraic Equations by : K. E. Brenan
Many physical problems are most naturally described by systems of differential and algebraic equations. This book describes some of the places where differential-algebraic equations (DAE's) occur. The basic mathematical theory for these equations is developed and numerical methods are presented and analyzed. Examples drawn from a variety of applications are used to motivate and illustrate the concepts and techniques. This classic edition, originally published in 1989, is the only general DAE book available. It not only develops guidelines for choosing different numerical methods, it is the first book to discuss DAE codes, including the popular DASSL code. An extensive discussion of backward differentiation formulas details why they have emerged as the most popular and best understood class of linear multistep methods for general DAE's. New to this edition is a chapter that brings the discussion of DAE software up to date. The objective of this monograph is to advance and consolidate the existing research results for the numerical solution of DAE's. The authors present results on the analysis of numerical methods, and also show how these results are relevant for the solution of problems from applications. They develop guidelines for problem formulation and effective use of the available mathematical software and provide extensive references for further study.
Author |
: J. C. Butcher |
Publisher |
: John Wiley & Sons |
Total Pages |
: 442 |
Release |
: 2004-08-20 |
ISBN-10 |
: 9780470868263 |
ISBN-13 |
: 0470868260 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Numerical Methods for Ordinary Differential Equations by : J. C. Butcher
This new book updates the exceptionally popular Numerical Analysis of Ordinary Differential Equations. "This book is...an indispensible reference for any researcher."-American Mathematical Society on the First Edition. Features: * New exercises included in each chapter. * Author is widely regarded as the world expert on Runge-Kutta methods * Didactic aspects of the book have been enhanced by interspersing the text with exercises. * Updated Bibliography.
Author |
: Kendall Atkinson |
Publisher |
: John Wiley & Sons |
Total Pages |
: 272 |
Release |
: 2011-10-24 |
ISBN-10 |
: 9781118164525 |
ISBN-13 |
: 1118164520 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Numerical Solution of Ordinary Differential Equations by : Kendall Atkinson
A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.
Author |
: J. D. Lambert |
Publisher |
: Wiley-Blackwell |
Total Pages |
: 293 |
Release |
: 1991 |
ISBN-10 |
: 0471929905 |
ISBN-13 |
: 9780471929901 |
Rating |
: 4/5 (05 Downloads) |
Synopsis Numerical Methods for Ordinary Differential Systems by : J. D. Lambert
Numerical Methods for Ordinary Differential Systems The Initial Value Problem J. D. Lambert Professor of Numerical Analysis University of Dundee Scotland In 1973 the author published a book entitled Computational Methods in Ordinary Differential Equations. Since then, there have been many new developments in this subject and the emphasis has changed substantially. This book reflects these changes; it is intended not as a revision of the earlier work but as a complete replacement for it. Although some basic material appears in both books, the treatment given here is generally different and there is very little overlap. In 1973 there were many methods competing for attention but more recently there has been increasing emphasis on just a few classes of methods for which sophisticated implementations now exist. This book places much more emphasis on such implementations—and on the important topic of stiffness—than did its predecessor. Also included are accounts of the structure of variable-step, variable-order methods, the Butcher and the Albrecht theories for Runge—Kutta methods, order stars and nonlinear stability theory. The author has taken a middle road between analytical rigour and a purely computational approach, key results being stated as theorems but proofs being provided only where they aid the reader’s understanding of the result. Numerous exercises, from the straightforward to the demanding, are included in the text. This book will appeal to advanced students and teachers of numerical analysis and to users of numerical methods who wish to understand how algorithms for ordinary differential systems work and, on occasion, fail to work.
Author |
: A.K. Aziz |
Publisher |
: Academic Press |
Total Pages |
: 380 |
Release |
: 2014-05-10 |
ISBN-10 |
: 9781483267999 |
ISBN-13 |
: 1483267997 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations by : A.K. Aziz
Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations covers the proceedings of the 1974 Symposium by the same title, held at the University of Maryland, Baltimore Country Campus. This symposium aims to bring together a number of numerical analysis involved in research in both theoretical and practical aspects of this field. This text is organized into three parts encompassing 15 chapters. Part I reviews the initial and boundary value problems. Part II explores a large number of important results of both theoretical and practical nature of the field, including discussions of the smooth and local interpolant with small K-th derivative, the occurrence and solution of boundary value reaction systems, the posteriori error estimates, and boundary problem solvers for first order systems based on deferred corrections. Part III highlights the practical applications of the boundary value problems, specifically a high-order finite-difference method for the solution of two-point boundary-value problems on a uniform mesh. This book will prove useful to mathematicians, engineers, and physicists.
Author |
: Taketomo Mitsui |
Publisher |
: World Scientific |
Total Pages |
: 244 |
Release |
: 1995 |
ISBN-10 |
: 9810222297 |
ISBN-13 |
: 9789810222291 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Numerical Analysis of Ordinary Differential Equations and Its Applications by : Taketomo Mitsui
The book collects original articles on numerical analysis of ordinary differential equations and its applications. Some of the topics covered in this volume are: discrete variable methods, Runge-Kutta methods, linear multistep methods, stability analysis, parallel implementation, self-validating numerical methods, analysis of nonlinear oscillation by numerical means, differential-algebraic and delay-differential equations, and stochastic initial value problems.