Nonlinear Time Series Analysis Of Economic And Financial Data
Download Nonlinear Time Series Analysis Of Economic And Financial Data full books in PDF, epub, and Kindle. Read online free Nonlinear Time Series Analysis Of Economic And Financial Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Philip Rothman |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 379 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461551294 |
ISBN-13 |
: 1461551293 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Nonlinear Time Series Analysis of Economic and Financial Data by : Philip Rothman
Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.
Author |
: Philip Rothman |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 394 |
Release |
: 1999-01-31 |
ISBN-10 |
: 9780792383796 |
ISBN-13 |
: 0792383796 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Nonlinear Time Series Analysis of Economic and Financial Data by : Philip Rothman
Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.
Author |
: Philip Hans Franses |
Publisher |
: Cambridge University Press |
Total Pages |
: 299 |
Release |
: 2000-07-27 |
ISBN-10 |
: 9780521770415 |
ISBN-13 |
: 0521770416 |
Rating |
: 4/5 (15 Downloads) |
Synopsis Non-Linear Time Series Models in Empirical Finance by : Philip Hans Franses
This 2000 volume reviews non-linear time series models, and their applications to financial markets.
Author |
: Abdol S. Soofi |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 528 |
Release |
: 2002-03-31 |
ISBN-10 |
: 0792376803 |
ISBN-13 |
: 9780792376804 |
Rating |
: 4/5 (03 Downloads) |
Synopsis Modelling and Forecasting Financial Data by : Abdol S. Soofi
Over the last decade, dynamical systems theory and related nonlinear methods have had a major impact on the analysis of time series data from complex systems. Recent developments in mathematical methods of state-space reconstruction, time-delay embedding, and surrogate data analysis, coupled with readily accessible and powerful computational facilities used in gathering and processing massive quantities of high-frequency data, have provided theorists and practitioners unparalleled opportunities for exploratory data analysis, modelling, forecasting, and control. Until now, research exploring the application of nonlinear dynamics and associated algorithms to the study of economies and markets as complex systems is sparse and fragmentary at best. Modelling and Forecasting Financial Data brings together a coherent and accessible set of chapters on recent research results on this topic. To make such methods readily useful in practice, the contributors to this volume have agreed to make available to readers upon request all computer programs used to implement the methods discussed in their respective chapters. Modelling and Forecasting Financial Data is a valuable resource for researchers and graduate students studying complex systems in finance, biology, and physics, as well as those applying such methods to nonlinear time series analysis and signal processing.
Author |
: Eric Zivot |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 632 |
Release |
: 2013-11-11 |
ISBN-10 |
: 9780387217635 |
ISBN-13 |
: 0387217630 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Modeling Financial Time Series with S-PLUS by : Eric Zivot
The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the "2000 Outstanding Scholars of the 21st Century" by International Biographical Centre.
Author |
: Jianqing Fan |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 565 |
Release |
: 2008-09-11 |
ISBN-10 |
: 9780387693958 |
ISBN-13 |
: 0387693955 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Nonlinear Time Series by : Jianqing Fan
This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics.
Author |
: Ruey S. Tsay |
Publisher |
: John Wiley & Sons |
Total Pages |
: 516 |
Release |
: 2018-09-13 |
ISBN-10 |
: 9781119264064 |
ISBN-13 |
: 1119264065 |
Rating |
: 4/5 (64 Downloads) |
Synopsis Nonlinear Time Series Analysis by : Ruey S. Tsay
A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.
Author |
: Ruey S. Tsay |
Publisher |
: John Wiley & Sons |
Total Pages |
: 724 |
Release |
: 2010-10-26 |
ISBN-10 |
: 9781118017098 |
ISBN-13 |
: 1118017099 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Analysis of Financial Time Series by : Ruey S. Tsay
This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methods Key features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.
Author |
: James D. Hamilton |
Publisher |
: Princeton University Press |
Total Pages |
: 820 |
Release |
: 2020-09-01 |
ISBN-10 |
: 9780691218632 |
ISBN-13 |
: 0691218633 |
Rating |
: 4/5 (32 Downloads) |
Synopsis Time Series Analysis by : James D. Hamilton
An authoritative, self-contained overview of time series analysis for students and researchers The past decade has brought dramatic changes in the way that researchers analyze economic and financial time series. This textbook synthesizes these advances and makes them accessible to first-year graduate students. James Hamilton provides comprehensive treatments of important innovations such as vector autoregressions, generalized method of moments, the economic and statistical consequences of unit roots, time-varying variances, and nonlinear time series models. In addition, he presents basic tools for analyzing dynamic systems—including linear representations, autocovariance generating functions, spectral analysis, and the Kalman filter—in a way that integrates economic theory with the practical difficulties of analyzing and interpreting real-world data. Time Series Analysis fills an important need for a textbook that integrates economic theory, econometrics, and new results. This invaluable book starts from first principles and should be readily accessible to any beginning graduate student, while it is also intended to serve as a reference book for researchers.
Author |
: Gilles Dufrénot |
Publisher |
: Springer Nature |
Total Pages |
: 387 |
Release |
: 2020-11-21 |
ISBN-10 |
: 9783030542528 |
ISBN-13 |
: 3030542521 |
Rating |
: 4/5 (28 Downloads) |
Synopsis Recent Econometric Techniques for Macroeconomic and Financial Data by : Gilles Dufrénot
The book provides a comprehensive overview of the latest econometric methods for studying the dynamics of macroeconomic and financial time series. It examines alternative methodological approaches and concepts, including quantile spectra and co-spectra, and explores topics such as non-linear and non-stationary behavior, stochastic volatility models, and the econometrics of commodity markets and globalization. Furthermore, it demonstrates the application of recent techniques in various fields: in the frequency domain, in the analysis of persistent dynamics, in the estimation of state space models and new classes of volatility models. The book is divided into two parts: The first part applies econometrics to the field of macroeconomics, discussing trend/cycle decomposition, growth analysis, monetary policy and international trade. The second part applies econometrics to a wide range of topics in financial economics, including price dynamics in equity, commodity and foreign exchange markets and portfolio analysis. The book is essential reading for scholars, students, and practitioners in government and financial institutions interested in applying recent econometric time series methods to financial and economic data.