Nonlinear Time Series Analysis

Nonlinear Time Series Analysis
Author :
Publisher : Cambridge University Press
Total Pages : 390
Release :
ISBN-10 : 0521529026
ISBN-13 : 9780521529020
Rating : 4/5 (26 Downloads)

Synopsis Nonlinear Time Series Analysis by : Holger Kantz

The paradigm of deterministic chaos has influenced thinking in many fields of science. Chaotic systems show rich and surprising mathematical structures. In the applied sciences, deterministic chaos provides a striking explanation for irregular behaviour and anomalies in systems which do not seem to be inherently stochastic. The most direct link between chaos theory and the real world is the analysis of time series from real systems in terms of nonlinear dynamics. Experimental technique and data analysis have seen such dramatic progress that, by now, most fundamental properties of nonlinear dynamical systems have been observed in the laboratory. Great efforts are being made to exploit ideas from chaos theory wherever the data displays more structure than can be captured by traditional methods. Problems of this kind are typical in biology and physiology but also in geophysics, economics, and many other sciences.

Nonlinear Time Series

Nonlinear Time Series
Author :
Publisher : Springer Science & Business Media
Total Pages : 565
Release :
ISBN-10 : 9780387693958
ISBN-13 : 0387693955
Rating : 4/5 (58 Downloads)

Synopsis Nonlinear Time Series by : Jianqing Fan

This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics.

Nonlinear Time Series Analysis

Nonlinear Time Series Analysis
Author :
Publisher : John Wiley & Sons
Total Pages : 516
Release :
ISBN-10 : 9781119264064
ISBN-13 : 1119264065
Rating : 4/5 (64 Downloads)

Synopsis Nonlinear Time Series Analysis by : Ruey S. Tsay

A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.

Elements of Nonlinear Time Series Analysis and Forecasting

Elements of Nonlinear Time Series Analysis and Forecasting
Author :
Publisher : Springer
Total Pages : 626
Release :
ISBN-10 : 9783319432526
ISBN-13 : 3319432524
Rating : 4/5 (26 Downloads)

Synopsis Elements of Nonlinear Time Series Analysis and Forecasting by : Jan G. De Gooijer

This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.

Nonlinear Time Series

Nonlinear Time Series
Author :
Publisher : CRC Press
Total Pages : 548
Release :
ISBN-10 : 9781466502345
ISBN-13 : 1466502347
Rating : 4/5 (45 Downloads)

Synopsis Nonlinear Time Series by : Randal Douc

This text emphasizes nonlinear models for a course in time series analysis. After introducing stochastic processes, Markov chains, Poisson processes, and ARMA models, the authors cover functional autoregressive, ARCH, threshold AR, and discrete time series models as well as several complementary approaches. They discuss the main limit theorems for Markov chains, useful inequalities, statistical techniques to infer model parameters, and GLMs. Moving on to HMM models, the book examines filtering and smoothing, parametric and nonparametric inference, advanced particle filtering, and numerical methods for inference.

Non-Linear Time Series Models in Empirical Finance

Non-Linear Time Series Models in Empirical Finance
Author :
Publisher : Cambridge University Press
Total Pages : 299
Release :
ISBN-10 : 9780521770415
ISBN-13 : 0521770416
Rating : 4/5 (15 Downloads)

Synopsis Non-Linear Time Series Models in Empirical Finance by : Philip Hans Franses

This 2000 volume reviews non-linear time series models, and their applications to financial markets.

Nonlinear Time Series Analysis of Economic and Financial Data

Nonlinear Time Series Analysis of Economic and Financial Data
Author :
Publisher : Springer Science & Business Media
Total Pages : 394
Release :
ISBN-10 : 9780792383796
ISBN-13 : 0792383796
Rating : 4/5 (96 Downloads)

Synopsis Nonlinear Time Series Analysis of Economic and Financial Data by : Philip Rothman

Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.

Nonlinear Time Series Analysis with R

Nonlinear Time Series Analysis with R
Author :
Publisher : Oxford University Press
Total Pages : 371
Release :
ISBN-10 : 9780198782933
ISBN-13 : 0198782934
Rating : 4/5 (33 Downloads)

Synopsis Nonlinear Time Series Analysis with R by : Ray G. Huffaker

Nonlinear Time Series Analysis with R provides a practical guide to emerging empirical techniques allowing practitioners to diagnose whether highly fluctuating and random appearing data are most likely driven by random or deterministic dynamic forces. Practitioners become 'data detectives' accumulating hard empirical evidence supporting their choice of a modelling approach corresponding to reality. The book is targeted to non-mathematicians with limitedknowledge of nonlinear dynamics; in particular, professionals and graduate students in engineering and the biophysical and social sciences. The book makes readers active learners with hands-on computerexperiments in R code directing them through Nonlinear Time Series Analysis (NLTS). The computer code is explained in detail so that readers can adjust it for use in their own work. The book also provides readers with an explicit framework--condensed from sound empirical practices recommended in the literature--that details a step-by-step procedure for applying NLTS in real-world data diagnostics.

Threshold Models in Non-linear Time Series Analysis

Threshold Models in Non-linear Time Series Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 333
Release :
ISBN-10 : 9781468478884
ISBN-13 : 1468478885
Rating : 4/5 (84 Downloads)

Synopsis Threshold Models in Non-linear Time Series Analysis by : H. Tong

In the last two years or so, I was most fortunate in being given opportunities of lecturing on a new methodology to a variety of audiences in Britain, China, Finland, France and Spain. Despite my almost Confucian attitude of preferring talking (i.e. a transient record) to writing (i.e. a permanent record), the warm encouragement of friends has led to the ensuing notes. I am also only too conscious of the infancy of the methodology introduced in these notes. However, it is my sincere hope that exposure to a wider audience will accelerate its maturity. Readers are assumed to be familiar with the basic theory of time series analysis. The book by Professor M.B. Priestley (1981) may be used as a general reference. Chapter One is addressed to the general question: "why do we need non-linear time series models?" After describing some significant advantages of linear models, it singles out several major limitations of linearity. Of course, the selection reflects my personal view on the subject, which is only at its very beginning, although there does seem to be a general agreement in the literature that time irr'eversibility and limit cycles are among the most obvious.

Nonlinear Time Series

Nonlinear Time Series
Author :
Publisher : CRC Press
Total Pages : 249
Release :
ISBN-10 : 9781420011210
ISBN-13 : 1420011219
Rating : 4/5 (10 Downloads)

Synopsis Nonlinear Time Series by : Jiti Gao

Useful in the theoretical and empirical analysis of nonlinear time series data, semiparametric methods have received extensive attention in the economics and statistics communities over the past twenty years. Recent studies show that semiparametric methods and models may be applied to solve dimensionality reduction problems arising from using fully