Neuromorphic Circuits for Nanoscale Devices

Neuromorphic Circuits for Nanoscale Devices
Author :
Publisher : CRC Press
Total Pages : 407
Release :
ISBN-10 : 9781000795790
ISBN-13 : 1000795799
Rating : 4/5 (90 Downloads)

Synopsis Neuromorphic Circuits for Nanoscale Devices by : Pinaki Mazumder

Nanoscale devices attracted significant research effort from the industry and academia due to their operation principals being based on different physical properties which provide advantages in the design of certain classes of circuits over conventional CMOS transistors. Neuromorphic Circuits for Nanoscale Devices contains recent research papers presented in various international conferences and journals to provide insight into how the operational principles of the nanoscale devices can be utilized for the design of neuromorphic circuits for various applications of non-volatile memory, neural network training/learning, and image processing. The topics discussed in the book include:Nanoscale Crossbar Memory DesignQ-Learning and Value Iteration using Nanoscale DevicesImage Processing and Computer Vision Applications for Nanoscale DevicesNanoscale Devices based Cellular Nonlinear/Neural Networks

Neuromorphic Circuits for Nanoscale Devices

Neuromorphic Circuits for Nanoscale Devices
Author :
Publisher : River Publishers Biomedical En
Total Pages : 0
Release :
ISBN-10 : 8770220603
ISBN-13 : 9788770220606
Rating : 4/5 (03 Downloads)

Synopsis Neuromorphic Circuits for Nanoscale Devices by : Pinaki Mazumder

Nanoscale devices attracted significant research effort from the industry and academia due to their operation principals being based on different physical properties which provide advantages in the design of certain classes of circuits over conventional CMOS transistors. Neuromorphic Circuits for Nanoscale Devices contains recent research papers presented in various international conferences and journals to provide insight into how the operational principles of the nanoscale devices can be utilized for the design of neuromorphic circuits for various applications of non-volatile memory, neural network training/learning, and image processing. The topics discussed in the book include: Nanoscale Crossbar Memory Design Q-Learning and Value Iteration using Nanoscale Devices Image Processing and Computer Vision Applications for Nanoscale Devices Nanoscale Devices based Cellular Nonlinear/Neural Networks

Nanoscale Memristor Device and Circuits Design

Nanoscale Memristor Device and Circuits Design
Author :
Publisher : Elsevier
Total Pages : 254
Release :
ISBN-10 : 9780323998116
ISBN-13 : 0323998119
Rating : 4/5 (16 Downloads)

Synopsis Nanoscale Memristor Device and Circuits Design by : Balwinder Raj

Nanoscale Memristor Device and Circuits Design provides theoretical frameworks, including (i) the background of memristors, (ii) physics of memristor and their modeling, (iii) menristive device applications, and (iv) circuit design for security and authentication. The book focuses on a broad aspect of realization of these applications as low cost and reliable devices. This is an important reference that will help materials scientists and engineers understand the production and applications of nanoscale memrister devices. A memristor is a two-terminal memory nanoscale device that stores information in terms of high/low resistance. It can retain information even when the power source is removed, i.e., "non-volatile." In contrast to MOS Transistors (MOST), which are the building blocks of all modern mobile and computing devices, memristors are relatively immune to radiation, as well as parasitic effects, such as capacitance, and can be much more reliable. This is extremely attractive for critical safety applications, such as nuclear and aerospace, where radiation can cause failure in MOST-based systems. - Outlines the major principles of circuit design for nanoelectronic applications - Explores major applications, including memristor-based memories, sensors, solar cells, or memristor-based hardware and software security applications - Assesses the major challenges to manufacturing nanoscale memristor devices at an industrial scale

Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design

Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design
Author :
Publisher : John Wiley & Sons
Total Pages : 423
Release :
ISBN-10 : 9781119507406
ISBN-13 : 1119507405
Rating : 4/5 (06 Downloads)

Synopsis Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design by : Nan Zheng

Explains current co-design and co-optimization methodologies for building hardware neural networks and algorithms for machine learning applications This book focuses on how to build energy-efficient hardware for neural networks with learning capabilities—and provides co-design and co-optimization methodologies for building hardware neural networks that can learn. Presenting a complete picture from high-level algorithm to low-level implementation details, Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design also covers many fundamentals and essentials in neural networks (e.g., deep learning), as well as hardware implementation of neural networks. The book begins with an overview of neural networks. It then discusses algorithms for utilizing and training rate-based artificial neural networks. Next comes an introduction to various options for executing neural networks, ranging from general-purpose processors to specialized hardware, from digital accelerator to analog accelerator. A design example on building energy-efficient accelerator for adaptive dynamic programming with neural networks is also presented. An examination of fundamental concepts and popular learning algorithms for spiking neural networks follows that, along with a look at the hardware for spiking neural networks. Then comes a chapter offering readers three design examples (two of which are based on conventional CMOS, and one on emerging nanotechnology) to implement the learning algorithm found in the previous chapter. The book concludes with an outlook on the future of neural network hardware. Includes cross-layer survey of hardware accelerators for neuromorphic algorithms Covers the co-design of architecture and algorithms with emerging devices for much-improved computing efficiency Focuses on the co-design of algorithms and hardware, which is especially critical for using emerging devices, such as traditional memristors or diffusive memristors, for neuromorphic computing Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design is an ideal resource for researchers, scientists, software engineers, and hardware engineers dealing with the ever-increasing requirement on power consumption and response time. It is also excellent for teaching and training undergraduate and graduate students about the latest generation neural networks with powerful learning capabilities.

Memristor

Memristor
Author :
Publisher : BoD – Books on Demand
Total Pages : 180
Release :
ISBN-10 : 9781839689567
ISBN-13 : 1839689560
Rating : 4/5 (67 Downloads)

Synopsis Memristor by : Yao-Feng Chang

This book provides a platform for interdisciplinary research into unconventional computing with emerging physical substrates. With a focus on memristor devices, the chapter authors discuss a wide range of topics, including memristor theory, mathematical modelling, circuit theory, memristor-mate, memristor security, artificial intelligence, and much more.

Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications

Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications
Author :
Publisher : Academic Press
Total Pages : 570
Release :
ISBN-10 : 9780128232026
ISBN-13 : 0128232021
Rating : 4/5 (26 Downloads)

Synopsis Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications by : Christos Volos

Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications illustrates recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) and their applications in nonlinear dynamical systems, computer science, analog and digital systems, and in neuromorphic circuits and artificial intelligence. The book is mainly devoted to recent results, critical aspects and perspectives of ongoing research on relevant topics, all involving networks of mem-elements devices in diverse applications. Sections contribute to the discussion of memristive materials and transport mechanisms, presenting various types of physical structures that can be fabricated to realize mem-elements in integrated circuits and device modeling. As the last decade has seen an increasing interest in recent advances in mem-elements and their applications in neuromorphic circuits and artificial intelligence, this book will attract researchers in various fields. - Covers a broad range of interdisciplinary topics between mathematics, circuits, realizations, and practical applications related to nonlinear dynamical systems, nanotechnology, analog and digital systems, computer science and artificial intelligence - Presents recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) - Includes interesting applications of mem-elements in nonlinear dynamical systems, analog and digital systems, neuromorphic circuits, computer science and artificial intelligence

Synaptic Plasticity for Neuromorphic Systems

Synaptic Plasticity for Neuromorphic Systems
Author :
Publisher : Frontiers Media SA
Total Pages : 178
Release :
ISBN-10 : 9782889198771
ISBN-13 : 2889198774
Rating : 4/5 (71 Downloads)

Synopsis Synaptic Plasticity for Neuromorphic Systems by : Christian Mayr

One of the most striking properties of biological systems is their ability to learn and adapt to ever changing environmental conditions, tasks and stimuli. It emerges from a number of different forms of plasticity, that change the properties of the computing substrate, mainly acting on the modification of the strength of synaptic connections that gate the flow of information across neurons. Plasticity is an essential ingredient for building artificial autonomous cognitive agents that can learn to reliably and meaningfully interact with the real world. For this reason, the neuromorphic community at large has put substantial effort in the design of different forms of plasticity and in putting them to practical use. These plasticity forms comprise, among others, Short Term Depression and Facilitation, Homeostasis, Spike Frequency Adaptation and diverse forms of Hebbian learning (e.g. Spike Timing Dependent Plasticity). This special research topic collects the most advanced developments in the design of the diverse forms of plasticity, from the single circuit to the system level, as well as their exploitation in the implementation of cognitive systems.

Advances in Neuromorphic Memristor Science and Applications

Advances in Neuromorphic Memristor Science and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 318
Release :
ISBN-10 : 9789400744912
ISBN-13 : 9400744919
Rating : 4/5 (12 Downloads)

Synopsis Advances in Neuromorphic Memristor Science and Applications by : Robert Kozma

Physical implementation of the memristor at industrial scale sparked the interest from various disciplines, ranging from physics, nanotechnology, electrical engineering, neuroscience, to intelligent robotics. As any promising new technology, it has raised hopes and questions; it is an extremely challenging task to live up to the high expectations and to devise revolutionary and feasible future applications for memristive devices. The possibility of gathering prominent scientists in the heart of the Silicon Valley given by the 2011 International Joint Conference on Neural Networks held in San Jose, CA, has offered us the unique opportunity of organizing a series of special events on the present status and future perspectives in neuromorphic memristor science. This book presents a selection of the remarkable contributions given by the leaders of the field and it may serve as inspiration and future reference to all researchers that want to explore the extraordinary possibilities given by this revolutionary concept.

Memristors for Neuromorphic Circuits and Artificial Intelligence Applications

Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
Author :
Publisher : MDPI
Total Pages : 244
Release :
ISBN-10 : 9783039285761
ISBN-13 : 3039285769
Rating : 4/5 (61 Downloads)

Synopsis Memristors for Neuromorphic Circuits and Artificial Intelligence Applications by : Jordi Suñé

Artificial Intelligence (AI) has found many applications in the past decade due to the ever increasing computing power. Artificial Neural Networks are inspired in the brain structure and consist in the interconnection of artificial neurons through artificial synapses. Training these systems requires huge amounts of data and, after the network is trained, it can recognize unforeseen data and provide useful information. The so-called Spiking Neural Networks behave similarly to how the brain functions and are very energy efficient. Up to this moment, both spiking and conventional neural networks have been implemented in software programs running on conventional computing units. However, this approach requires high computing power, a large physical space and is energy inefficient. Thus, there is an increasing interest in developing AI tools directly implemented in hardware. The first hardware demonstrations have been based on CMOS circuits for neurons and specific communication protocols for synapses. However, to further increase training speed and energy efficiency while decreasing system size, the combination of CMOS neurons with memristor synapses is being explored. The memristor is a resistor with memory which behaves similarly to biological synapses. This book explores the state-of-the-art of neuromorphic circuits implementing neural networks with memristors for AI applications.

Neuromorphic Devices for Brain-inspired Computing

Neuromorphic Devices for Brain-inspired Computing
Author :
Publisher : John Wiley & Sons
Total Pages : 258
Release :
ISBN-10 : 9783527349791
ISBN-13 : 3527349790
Rating : 4/5 (91 Downloads)

Synopsis Neuromorphic Devices for Brain-inspired Computing by : Qing Wan

Explore the cutting-edge of neuromorphic technologies with applications in Artificial Intelligence In Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics, a team of expert engineers delivers a comprehensive discussion of all aspects of neuromorphic electronics designed to assist researchers and professionals to understand and apply all manner of brain-inspired computing and perception technologies. The book covers both memristic and neuromorphic devices, including spintronic, multi-terminal, and neuromorphic perceptual applications. Summarizing recent progress made in five distinct configurations of brain-inspired computing, the authors explore this promising technology’s potential applications in two specific areas: neuromorphic computing systems and neuromorphic perceptual systems. The book also includes: A thorough introduction to two-terminal neuromorphic memristors, including memristive devices and resistive switching mechanisms Comprehensive explorations of spintronic neuromorphic devices and multi-terminal neuromorphic devices with cognitive behaviors Practical discussions of neuromorphic devices based on chalcogenide and organic materials In-depth examinations of neuromorphic computing and perceptual systems with emerging devices Perfect for materials scientists, biochemists, and electronics engineers, Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics will also earn a place in the libraries of neurochemists, neurobiologists, and neurophysiologists.