Artificial Neural Networks for Modelling and Control of Non-Linear Systems

Artificial Neural Networks for Modelling and Control of Non-Linear Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 242
Release :
ISBN-10 : 9781475724936
ISBN-13 : 1475724934
Rating : 4/5 (36 Downloads)

Synopsis Artificial Neural Networks for Modelling and Control of Non-Linear Systems by : Johan A.K. Suykens

Artificial neural networks possess several properties that make them particularly attractive for applications to modelling and control of complex non-linear systems. Among these properties are their universal approximation ability, their parallel network structure and the availability of on- and off-line learning methods for the interconnection weights. However, dynamic models that contain neural network architectures might be highly non-linear and difficult to analyse as a result. Artificial Neural Networks for Modelling and Control of Non-Linear Systems investigates the subject from a system theoretical point of view. However the mathematical theory that is required from the reader is limited to matrix calculus, basic analysis, differential equations and basic linear system theory. No preliminary knowledge of neural networks is explicitly required. The book presents both classical and novel network architectures and learning algorithms for modelling and control. Topics include non-linear system identification, neural optimal control, top-down model based neural control design and stability analysis of neural control systems. A major contribution of this book is to introduce NLq Theory as an extension towards modern control theory, in order to analyze and synthesize non-linear systems that contain linear together with static non-linear operators that satisfy a sector condition: neural state space control systems are an example. Moreover, it turns out that NLq Theory is unifying with respect to many problems arising in neural networks, systems and control. Examples show that complex non-linear systems can be modelled and controlled within NLq theory, including mastering chaos. The didactic flavor of this book makes it suitable for use as a text for a course on Neural Networks. In addition, researchers and designers will find many important new techniques, in particular NLq emTheory, that have applications in control theory, system theory, circuit theory and Time Series Analysis.

Data-Driven Science and Engineering

Data-Driven Science and Engineering
Author :
Publisher : Cambridge University Press
Total Pages : 615
Release :
ISBN-10 : 9781009098489
ISBN-13 : 1009098489
Rating : 4/5 (89 Downloads)

Synopsis Data-Driven Science and Engineering by : Steven L. Brunton

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Neural Systems for Control

Neural Systems for Control
Author :
Publisher : Elsevier
Total Pages : 375
Release :
ISBN-10 : 9780080537399
ISBN-13 : 0080537391
Rating : 4/5 (99 Downloads)

Synopsis Neural Systems for Control by : Omid Omidvar

Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. - Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory - Represents the most up-to-date developments in this rapidly growing application area of neural networks - Takes a new and novel approach to system identification and synthesis

Modelling and Control of Dynamic Systems Using Gaussian Process Models

Modelling and Control of Dynamic Systems Using Gaussian Process Models
Author :
Publisher : Springer
Total Pages : 281
Release :
ISBN-10 : 9783319210216
ISBN-13 : 3319210211
Rating : 4/5 (16 Downloads)

Synopsis Modelling and Control of Dynamic Systems Using Gaussian Process Models by : Juš Kocijan

This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.

Artificial Higher Order Neural Networks for Modeling and Simulation

Artificial Higher Order Neural Networks for Modeling and Simulation
Author :
Publisher : IGI Global
Total Pages : 455
Release :
ISBN-10 : 9781466621763
ISBN-13 : 1466621761
Rating : 4/5 (63 Downloads)

Synopsis Artificial Higher Order Neural Networks for Modeling and Simulation by : Zhang, Ming

"This book introduces Higher Order Neural Networks (HONNs) to computer scientists and computer engineers as an open box neural networks tool when compared to traditional artificial neural networks"--Provided by publisher.

Neural Network Applications in Control

Neural Network Applications in Control
Author :
Publisher : IET
Total Pages : 320
Release :
ISBN-10 : 0852968523
ISBN-13 : 9780852968529
Rating : 4/5 (23 Downloads)

Synopsis Neural Network Applications in Control by : George William Irwin

The aim is to present an introduction to, and an overview of, the present state of neural network research and development, with an emphasis on control systems application studies. The book is useful to a range of levels of reader. The earlier chapters introduce the more popular networks and the fundamental control principles, these are followed by a series of application studies, most of which are industrially based, and the book concludes with a consideration of some recent research.

Neural Networks for Identification, Prediction and Control

Neural Networks for Identification, Prediction and Control
Author :
Publisher : Springer Science & Business Media
Total Pages : 243
Release :
ISBN-10 : 9781447132448
ISBN-13 : 1447132440
Rating : 4/5 (48 Downloads)

Synopsis Neural Networks for Identification, Prediction and Control by : Duc T. Pham

In recent years, there has been a growing interest in applying neural networks to dynamic systems identification (modelling), prediction and control. Neural networks are computing systems characterised by the ability to learn from examples rather than having to be programmed in a conventional sense. Their use enables the behaviour of complex systems to be modelled and predicted and accurate control to be achieved through training, without a priori information about the systems' structures or parameters. This book describes examples of applications of neural networks In modelling, prediction and control. The topics covered include identification of general linear and non-linear processes, forecasting of river levels, stock market prices and currency exchange rates, and control of a time-delayed plant and a two-joint robot. These applications employ the major types of neural networks and learning algorithms. The neural network types considered in detail are the muhilayer perceptron (MLP), the Elman and Jordan networks and the Group-Method-of-Data-Handling (GMDH) network. In addition, cerebellar-model-articulation-controller (CMAC) networks and neuromorphic fuzzy logic systems are also presented. The main learning algorithm adopted in the applications is the standard backpropagation (BP) algorithm. Widrow-Hoff learning, dynamic BP and evolutionary learning are also described.

Adaptive Control with Recurrent High-order Neural Networks

Adaptive Control with Recurrent High-order Neural Networks
Author :
Publisher : Springer Science & Business Media
Total Pages : 203
Release :
ISBN-10 : 9781447107859
ISBN-13 : 1447107853
Rating : 4/5 (59 Downloads)

Synopsis Adaptive Control with Recurrent High-order Neural Networks by : George A. Rovithakis

The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Neural networks is one of those areas where an initial burst of enthusiasm and optimism leads to an explosion of papers in the journals and many presentations at conferences but it is only in the last decade that significant theoretical work on stability, convergence and robustness for the use of neural networks in control systems has been tackled. George Rovithakis and Manolis Christodoulou have been interested in these theoretical problems and in the practical aspects of neural network applications to industrial problems. This very welcome addition to the Advances in Industrial Control series provides a succinct report of their research. The neural network model at the core of their work is the Recurrent High Order Neural Network (RHONN) and a complete theoretical and simulation development is presented. Different readers will find different aspects of the development of interest. The last chapter of the monograph discusses the problem of manufacturing or production process scheduling.

Modelling and Parameter Estimation of Dynamic Systems

Modelling and Parameter Estimation of Dynamic Systems
Author :
Publisher : IET
Total Pages : 405
Release :
ISBN-10 : 9780863413636
ISBN-13 : 0863413633
Rating : 4/5 (36 Downloads)

Synopsis Modelling and Parameter Estimation of Dynamic Systems by : J.R. Raol

This book presents a detailed examination of the estimation techniques and modeling problems. The theory is furnished with several illustrations and computer programs to promote better understanding of system modeling and parameter estimation.