Neural Networks For Identification Prediction And Control
Download Neural Networks For Identification Prediction And Control full books in PDF, epub, and Kindle. Read online free Neural Networks For Identification Prediction And Control ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Duc T. Pham |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 243 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781447132448 |
ISBN-13 |
: 1447132440 |
Rating |
: 4/5 (48 Downloads) |
Synopsis Neural Networks for Identification, Prediction and Control by : Duc T. Pham
In recent years, there has been a growing interest in applying neural networks to dynamic systems identification (modelling), prediction and control. Neural networks are computing systems characterised by the ability to learn from examples rather than having to be programmed in a conventional sense. Their use enables the behaviour of complex systems to be modelled and predicted and accurate control to be achieved through training, without a priori information about the systems' structures or parameters. This book describes examples of applications of neural networks In modelling, prediction and control. The topics covered include identification of general linear and non-linear processes, forecasting of river levels, stock market prices and currency exchange rates, and control of a time-delayed plant and a two-joint robot. These applications employ the major types of neural networks and learning algorithms. The neural network types considered in detail are the muhilayer perceptron (MLP), the Elman and Jordan networks and the Group-Method-of-Data-Handling (GMDH) network. In addition, cerebellar-model-articulation-controller (CMAC) networks and neuromorphic fuzzy logic systems are also presented. The main learning algorithm adopted in the applications is the standard backpropagation (BP) algorithm. Widrow-Hoff learning, dynamic BP and evolutionary learning are also described.
Author |
: Omid Omidvar |
Publisher |
: Elsevier |
Total Pages |
: 375 |
Release |
: 1997-02-24 |
ISBN-10 |
: 9780080537399 |
ISBN-13 |
: 0080537391 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Neural Systems for Control by : Omid Omidvar
Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. - Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory - Represents the most up-to-date developments in this rapidly growing application area of neural networks - Takes a new and novel approach to system identification and synthesis
Author |
: W. Thomas Miller |
Publisher |
: MIT Press |
Total Pages |
: 548 |
Release |
: 1995 |
ISBN-10 |
: 026263161X |
ISBN-13 |
: 9780262631617 |
Rating |
: 4/5 (1X Downloads) |
Synopsis Neural Networks for Control by : W. Thomas Miller
Neural Networks for Control brings together examples of all the most important paradigms for the application of neural networks to robotics and control. Primarily concerned with engineering problems and approaches to their solution through neurocomputing systems, the book is divided into three sections: general principles, motion control, and applications domains (with evaluations of the possible applications by experts in the applications areas.) Special emphasis is placed on designs based on optimization or reinforcement, which will become increasingly important as researchers address more complex engineering challenges or real biological-control problems.A Bradford Book. Neural Network Modeling and Connectionism series
Author |
: Xingui He |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 240 |
Release |
: 2010-07-05 |
ISBN-10 |
: 9783540737629 |
ISBN-13 |
: 3540737626 |
Rating |
: 4/5 (29 Downloads) |
Synopsis Process Neural Networks by : Xingui He
For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.
Author |
: M. Norgaard |
Publisher |
: |
Total Pages |
: 246 |
Release |
: 2003 |
ISBN-10 |
: OCLC:876537456 |
ISBN-13 |
: |
Rating |
: 4/5 (56 Downloads) |
Synopsis Neural Networks for Modelling and Control of Dynamic Systems by : M. Norgaard
Author |
: Achilleas Zapranis |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 194 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781447105596 |
ISBN-13 |
: 1447105591 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Principles of Neural Model Identification, Selection and Adequacy by : Achilleas Zapranis
Neural networks have had considerable success in a variety of disciplines including engineering, control, and financial modelling. However a major weakness is the lack of established procedures for testing mis-specified models and the statistical significance of the various parameters which have been estimated. This is particularly important in the majority of financial applications where the data generating processes are dominantly stochastic and only partially deterministic. Based on the latest, most significant developments in estimation theory, model selection and the theory of mis-specified models, this volume develops neural networks into an advanced financial econometrics tool for non-parametric modelling. It provides the theoretical framework required, and displays the efficient use of neural networks for modelling complex financial phenomena. Unlike most other books in this area, this one treats neural networks as statistical devices for non-linear, non-parametric regression analysis.
Author |
: Kate A. Smith |
Publisher |
: IGI Global |
Total Pages |
: 274 |
Release |
: 2003-01-01 |
ISBN-10 |
: 1931777799 |
ISBN-13 |
: 9781931777797 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Neural Networks in Business by : Kate A. Smith
"For professionals, students, and academics interested in applying neural networks to a variety of business applications, this reference book introduces the three most common neural network models and how they work. A wide range of business applications and a series of global case studies are presented to illustrate the neural network models provided. Each model or technique is discussed in detail and used to solve a business problem such as managing direct marketing, calculating foreign exchange rates, and improving cash flow forecasting."
Author |
: Krzysztof Patan |
Publisher |
: Springer |
Total Pages |
: 231 |
Release |
: 2019-03-16 |
ISBN-10 |
: 9783030118693 |
ISBN-13 |
: 303011869X |
Rating |
: 4/5 (93 Downloads) |
Synopsis Robust and Fault-Tolerant Control by : Krzysztof Patan
Robust and Fault-Tolerant Control proposes novel automatic control strategies for nonlinear systems developed by means of artificial neural networks and pays special attention to robust and fault-tolerant approaches. The book discusses robustness and fault tolerance in the context of model predictive control, fault accommodation and reconfiguration, and iterative learning control strategies. Expanding on its theoretical deliberations the monograph includes many case studies demonstrating how the proposed approaches work in practice. The most important features of the book include: a comprehensive review of neural network architectures with possible applications in system modelling and control; a concise introduction to robust and fault-tolerant control; step-by-step presentation of the control approaches proposed; an abundance of case studies illustrating the important steps in designing robust and fault-tolerant control; and a large number of figures and tables facilitating the performance analysis of the control approaches described. The material presented in this book will be useful for researchers and engineers who wish to avoid spending excessive time in searching neural-network-based control solutions. It is written for electrical, computer science and automatic control engineers interested in control theory and their applications. This monograph will also interest postgraduate students engaged in self-study of nonlinear robust and fault-tolerant control.
Author |
: Management Association, Information Resources |
Publisher |
: IGI Global |
Total Pages |
: 1575 |
Release |
: 2021-07-16 |
ISBN-10 |
: 9781668424094 |
ISBN-13 |
: 1668424096 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Research Anthology on Artificial Neural Network Applications by : Management Association, Information Resources
Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.
Author |
: M A Hussain |
Publisher |
: World Scientific |
Total Pages |
: 423 |
Release |
: 2001-04-02 |
ISBN-10 |
: 9781783261482 |
ISBN-13 |
: 178326148X |
Rating |
: 4/5 (82 Downloads) |
Synopsis Application Of Neural Networks And Other Learning Technologies In Process Engineering by : M A Hussain
This book is a follow-up to the IChemE symposium on “Neural Networks and Other Learning Technologies”, held at Imperial College, UK, in May 1999. The interest shown by the participants, especially those from the industry, has been instrumental in producing the book. The papers have been written by contributors of the symposium and experts in this field from around the world. They present all the important aspects of neural network utilisation as well as show the versatility of neural networks in various aspects of process engineering problems — modelling, estimation, control, optimisation and industrial applications.