Natural Language Understanding In A Semantic Web Context
Download Natural Language Understanding In A Semantic Web Context full books in PDF, epub, and Kindle. Read online free Natural Language Understanding In A Semantic Web Context ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Caroline Barrière |
Publisher |
: Springer |
Total Pages |
: 323 |
Release |
: 2016-11-17 |
ISBN-10 |
: 9783319413372 |
ISBN-13 |
: 3319413376 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Natural Language Understanding in a Semantic Web Context by : Caroline Barrière
This book serves as a starting point for Semantic Web (SW) students and researchers interested in discovering what Natural Language Processing (NLP) has to offer. NLP can effectively help uncover the large portions of data held as unstructured text in natural language, thus augmenting the real content of the Semantic Web in a significant and lasting way. The book covers the basics of NLP, with a focus on Natural Language Understanding (NLU), referring to semantic processing, information extraction and knowledge acquisition, which are seen as the key links between the SW and NLP communities. Major emphasis is placed on mining sentences in search of entities and relations. In the course of this “quest", challenges will be encountered for various text analysis tasks, including part-of-speech tagging, parsing, semantic disambiguation, named entity recognition and relation extraction. Standard algorithms associated with these tasks are presented to provide an understanding of the fundamental concepts. Furthermore, the importance of experimental design and result analysis is emphasized, and accordingly, most chapters include small experiments on corpus data with quantitative and qualitative analysis of the results. This book is divided into four parts. Part I “Searching for Entities in Text” is dedicated to the search for entities in textual data. Next, Part II “Working with Corpora” investigates corpora as valuable resources for NLP work. In turn, Part III “Semantic Grounding and Relatedness” focuses on the process of linking surface forms found in text to entities in resources. Finally, Part IV “Knowledge Acquisition” delves into the world of relations and relation extraction. The book also includes three appendices: “A Look into the Semantic Web” gives a brief overview of the Semantic Web and is intended to bring readers less familiar with the Semantic Web up to speed, so that they too can fully benefit from the material of this book. “NLP Tools and Platforms” provides information about NLP platforms and tools, while “Relation Lists” gathers lists of relations under different categories, showing how relations can be varied and serve different purposes. And finally, the book includes a glossary of over 200 terms commonly used in NLP. The book offers a valuable resource for graduate students specializing in SW technologies and professionals looking for new tools to improve the applicability of SW techniques in everyday life – or, in short, everyone looking to learn about NLP in order to expand his or her horizons. It provides a wealth of information for readers new to both fields, helping them understand the underlying principles and the challenges they may encounter.
Author |
: Caroline Barrière |
Publisher |
: Springer |
Total Pages |
: 0 |
Release |
: 2016-11-24 |
ISBN-10 |
: 331941335X |
ISBN-13 |
: 9783319413358 |
Rating |
: 4/5 (5X Downloads) |
Synopsis Natural Language Understanding in a Semantic Web Context by : Caroline Barrière
This book serves as a starting point for Semantic Web (SW) students and researchers interested in discovering what Natural Language Processing (NLP) has to offer. NLP can effectively help uncover the large portions of data held as unstructured text in natural language, thus augmenting the real content of the Semantic Web in a significant and lasting way. The book covers the basics of NLP, with a focus on Natural Language Understanding (NLU), referring to semantic processing, information extraction and knowledge acquisition, which are seen as the key links between the SW and NLP communities. Major emphasis is placed on mining sentences in search of entities and relations. In the course of this “quest", challenges will be encountered for various text analysis tasks, including part-of-speech tagging, parsing, semantic disambiguation, named entity recognition and relation extraction. Standard algorithms associated with these tasks are presented to provide an understanding of the fundamental concepts. Furthermore, the importance of experimental design and result analysis is emphasized, and accordingly, most chapters include small experiments on corpus data with quantitative and qualitative analysis of the results. This book is divided into four parts. Part I “Searching for Entities in Text” is dedicated to the search for entities in textual data. Next, Part II “Working with Corpora” investigates corpora as valuable resources for NLP work. In turn, Part III “Semantic Grounding and Relatedness” focuses on the process of linking surface forms found in text to entities in resources. Finally, Part IV “Knowledge Acquisition” delves into the world of relations and relation extraction. The book also includes three appendices: “A Look into the Semantic Web” gives a brief overview of the Semantic Web and is intended to bring readers less familiar with the Semantic Web up to speed, so that they too can fully benefit from the material of this book. “NLP Tools and Platforms” provides information about NLP platforms and tools, while “Relation Lists” gathers lists of relations under different categories, showing how relations can be varied and serve different purposes. And finally, the book includes a glossary of over 200 terms commonly used in NLP. The book offers a valuable resource for graduate students specializing in SW technologies and professionals looking for new tools to improve the applicability of SW techniques in everyday life – or, in short, everyone looking to learn about NLP in order to expand his or her horizons. It provides a wealth of information for readers new to both fields, helping them understand the underlying principles and the challenges they may encounter.
Author |
: Diana Maynard |
Publisher |
: Morgan & Claypool Publishers |
Total Pages |
: 196 |
Release |
: 2016-12-13 |
ISBN-10 |
: 9781627056328 |
ISBN-13 |
: 1627056327 |
Rating |
: 4/5 (28 Downloads) |
Synopsis Natural Language Processing for the Semantic Web by : Diana Maynard
This book introduces core natural language processing (NLP) technologies to non-experts in an easily accessible way, as a series of building blocks that lead the user to understand key technologies, why they are required, and how to integrate them into Semantic Web applications. Natural language processing and Semantic Web technologies have different, but complementary roles in data management. Combining these two technologies enables structured and unstructured data to merge seamlessly. Semantic Web technologies aim to convert unstructured data to meaningful representations, which benefit enormously from the use of NLP technologies, thereby enabling applications such as connecting text to Linked Open Data, connecting texts to each other, semantic searching, information visualization, and modeling of user behavior in online networks. The first half of this book describes the basic NLP processing tools: tokenization, part-of-speech tagging, and morphological analysis, in addition to the main tools required for an information extraction system (named entity recognition and relation extraction) which build on these components. The second half of the book explains how Semantic Web and NLP technologies can enhance each other, for example via semantic annotation, ontology linking, and population. These chapters also discuss sentiment analysis, a key component in making sense of textual data, and the difficulties of performing NLP on social media, as well as some proposed solutions. The book finishes by investigating some applications of these tools, focusing on semantic search and visualization, modeling user behavior, and an outlook on the future.
Author |
: Pazos-Rangel, Rodolfo Abraham |
Publisher |
: IGI Global |
Total Pages |
: 554 |
Release |
: 2020-10-02 |
ISBN-10 |
: 9781799847311 |
ISBN-13 |
: 1799847314 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Handbook of Research on Natural Language Processing and Smart Service Systems by : Pazos-Rangel, Rodolfo Abraham
Natural language processing (NLP) is a branch of artificial intelligence that has emerged as a prevalent method of practice for a sizeable amount of companies. NLP enables software to understand human language and process complex data that is generated within businesses. In a competitive market, leading organizations are showing an increased interest in implementing this technology to improve user experience and establish smarter decision-making methods. Research on the application of intelligent analytics is crucial for professionals and companies who wish to gain an edge on the opposition. The Handbook of Research on Natural Language Processing and Smart Service Systems is a collection of innovative research on the integration and development of intelligent software tools and their various applications within professional environments. While highlighting topics including discourse analysis, information retrieval, and advanced dialog systems, this book is ideally designed for developers, practitioners, researchers, managers, engineers, academicians, business professionals, scholars, policymakers, and students seeking current research on the improvement of competitive practices through the use of NLP and smart service systems.
Author |
: Philipp Cimiano |
Publisher |
: Springer Nature |
Total Pages |
: 158 |
Release |
: 2022-06-01 |
ISBN-10 |
: 9783031021541 |
ISBN-13 |
: 3031021541 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Ontology-Based Interpretation of Natural Language by : Philipp Cimiano
For humans, understanding a natural language sentence or discourse is so effortless that we hardly ever think about it. For machines, however, the task of interpreting natural language, especially grasping meaning beyond the literal content, has proven extremely difficult and requires a large amount of background knowledge. This book focuses on the interpretation of natural language with respect to specific domain knowledge captured in ontologies. The main contribution is an approach that puts ontologies at the center of the interpretation process. This means that ontologies not only provide a formalization of domain knowledge necessary for interpretation but also support and guide the construction of meaning representations. We start with an introduction to ontologies and demonstrate how linguistic information can be attached to them by means of the ontology lexicon model lemon. These lexica then serve as basis for the automatic generation of grammars, which we use to compositionally construct meaning representations that conform with the vocabulary of an underlying ontology. As a result, the level of representational granularity is not driven by language but by the semantic distinctions made in the underlying ontology and thus by distinctions that are relevant in the context of a particular domain. We highlight some of the challenges involved in the construction of ontology-based meaning representations, and show how ontologies can be exploited for ambiguity resolution and the interpretation of temporal expressions. Finally, we present a question answering system that combines all tools and techniques introduced throughout the book in a real-world application, and sketch how the presented approach can scale to larger, multi-domain scenarios in the context of the Semantic Web. Table of Contents: List of Figures / Preface / Acknowledgments / Introduction / Ontologies / Linguistic Formalisms / Ontology Lexica / Grammar Generation / Putting Everything Together / Ontological Reasoning for Ambiguity Resolution / Temporal Interpretation / Ontology-Based Interpretation for Question Answering / Conclusion / Bibliography / Authors' Biographies
Author |
: Dan Jurafsky |
Publisher |
: Pearson Education India |
Total Pages |
: 912 |
Release |
: 2000-09 |
ISBN-10 |
: 8131716724 |
ISBN-13 |
: 9788131716724 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Speech & Language Processing by : Dan Jurafsky
Author |
: Sébastien Harispe |
Publisher |
: Morgan & Claypool Publishers |
Total Pages |
: 256 |
Release |
: 2015-05-01 |
ISBN-10 |
: 9781627054478 |
ISBN-13 |
: 1627054472 |
Rating |
: 4/5 (78 Downloads) |
Synopsis Semantic Similarity from Natural Language and Ontology Analysis by : Sébastien Harispe
Artificial Intelligence federates numerous scientific fields in the aim of developing machines able to assist human operators performing complex treatments---most of which demand high cognitive skills (e.g. learning or decision processes). Central to this quest is to give machines the ability to estimate the likeness or similarity between things in the way human beings estimate the similarity between stimuli. In this context, this book focuses on semantic measures: approaches designed for comparing semantic entities such as units of language, e.g. words, sentences, or concepts and instances defined into knowledge bases. The aim of these measures is to assess the similarity or relatedness of such semantic entities by taking into account their semantics, i.e. their meaning---intuitively, the words tea and coffee, which both refer to stimulating beverage, will be estimated to be more semantically similar than the words toffee (confection) and coffee, despite that the last pair has a higher syntactic similarity. The two state-of-the-art approaches for estimating and quantifying semantic similarities/relatedness of semantic entities are presented in detail: the first one relies on corpora analysis and is based on Natural Language Processing techniques and semantic models while the second is based on more or less formal, computer-readable and workable forms of knowledge such as semantic networks, thesauri or ontologies. Semantic measures are widely used today to compare units of language, concepts, instances or even resources indexed by them (e.g., documents, genes). They are central elements of a large variety of Natural Language Processing applications and knowledge-based treatments, and have therefore naturally been subject to intensive and interdisciplinary research efforts during last decades. Beyond a simple inventory and categorization of existing measures, the aim of this monograph is to convey novices as well as researchers of these domains toward a better understanding of semantic similarity estimation and more generally semantic measures. To this end, we propose an in-depth characterization of existing proposals by discussing their features, the assumptions on which they are based and empirical results regarding their performance in particular applications. By answering these questions and by providing a detailed discussion on the foundations of semantic measures, our aim is to give the reader key knowledge required to: (i) select the more relevant methods according to a particular usage context, (ii) understand the challenges offered to this field of study, (iii) distinguish room of improvements for state-of-the-art approaches and (iv) stimulate creativity toward the development of new approaches. In this aim, several definitions, theoretical and practical details, as well as concrete applications are presented
Author |
: Epaminondas Kapetanios |
Publisher |
: CRC Press |
Total Pages |
: 343 |
Release |
: 2013-11-14 |
ISBN-10 |
: 9781466584976 |
ISBN-13 |
: 1466584971 |
Rating |
: 4/5 (76 Downloads) |
Synopsis Natural Language Processing by : Epaminondas Kapetanios
This book introduces the semantic aspects of natural language processing and its applications. Topics covered include: measuring word meaning similarity, multi-lingual querying, and parametric theory, named entity recognition, semantics, query language, and the nature of language. The book also emphasizes the portions of mathematics needed to under
Author |
: Atefeh Farzindar |
Publisher |
: Morgan & Claypool Publishers |
Total Pages |
: 242 |
Release |
: 2017-12-15 |
ISBN-10 |
: 9781681733272 |
ISBN-13 |
: 1681733277 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Natural Language Processing for Social Media by : Atefeh Farzindar
In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms which extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. We discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on NLP tools and methods for processing the non-traditional information from social media data that is available in large amounts (big data), and shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, healthcare, business intelligence, industry, marketing, and security and defence. We review the existing evaluation metrics for NLP and social media applications, and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks) or by the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC). In the concluding chapter, we discuss the importance of this dynamic discipline and its great potential for NLP in the coming decade, in the context of changes in mobile technology, cloud computing, virtual reality, and social networking. In this second edition, we have added information about recent progress in the tasks and applications presented in the first edition. We discuss new methods and their results. The number of research projects and publications that use social media data is constantly increasing due to continuously growing amounts of social media data and the need to automatically process them. We have added 85 new references to the more than 300 references from the first edition. Besides updating each section, we have added a new application (digital marketing) to the section on media monitoring and we have augmented the section on healthcare applications with an extended discussion of recent research on detecting signs of mental illness from social media.
Author |
: Mohammad Taher Pilehvar |
Publisher |
: Morgan & Claypool Publishers |
Total Pages |
: 177 |
Release |
: 2020-11-13 |
ISBN-10 |
: 9781636390222 |
ISBN-13 |
: 1636390226 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Embeddings in Natural Language Processing by : Mohammad Taher Pilehvar
Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP. Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.