Embeddings in Natural Language Processing

Embeddings in Natural Language Processing
Author :
Publisher : Morgan & Claypool Publishers
Total Pages : 177
Release :
ISBN-10 : 9781636390222
ISBN-13 : 1636390226
Rating : 4/5 (22 Downloads)

Synopsis Embeddings in Natural Language Processing by : Mohammad Taher Pilehvar

Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP. Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.

Representation Learning for Natural Language Processing

Representation Learning for Natural Language Processing
Author :
Publisher : Springer Nature
Total Pages : 319
Release :
ISBN-10 : 9789811555732
ISBN-13 : 9811555737
Rating : 4/5 (32 Downloads)

Synopsis Representation Learning for Natural Language Processing by : Zhiyuan Liu

This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.

Guide to Big Data Applications

Guide to Big Data Applications
Author :
Publisher : Springer
Total Pages : 567
Release :
ISBN-10 : 9783319538174
ISBN-13 : 3319538179
Rating : 4/5 (74 Downloads)

Synopsis Guide to Big Data Applications by : S. Srinivasan

This handbook brings together a variety of approaches to the uses of big data in multiple fields, primarily science, medicine, and business. This single resource features contributions from researchers around the world from a variety of fields, where they share their findings and experience. This book is intended to help spur further innovation in big data. The research is presented in a way that allows readers, regardless of their field of study, to learn from how applications have proven successful and how similar applications could be used in their own field. Contributions stem from researchers in fields such as physics, biology, energy, healthcare, and business. The contributors also discuss important topics such as fraud detection, privacy implications, legal perspectives, and ethical handling of big data.

Supervised Machine Learning for Text Analysis in R

Supervised Machine Learning for Text Analysis in R
Author :
Publisher : CRC Press
Total Pages : 402
Release :
ISBN-10 : 9781000461978
ISBN-13 : 1000461971
Rating : 4/5 (78 Downloads)

Synopsis Supervised Machine Learning for Text Analysis in R by : Emil Hvitfeldt

Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.

Natural Language Processing with TensorFlow

Natural Language Processing with TensorFlow
Author :
Publisher : Packt Publishing Ltd
Total Pages : 472
Release :
ISBN-10 : 9781788477758
ISBN-13 : 1788477758
Rating : 4/5 (58 Downloads)

Synopsis Natural Language Processing with TensorFlow by : Thushan Ganegedara

Write modern natural language processing applications using deep learning algorithms and TensorFlow Key Features Focuses on more efficient natural language processing using TensorFlow Covers NLP as a field in its own right to improve understanding for choosing TensorFlow tools and other deep learning approaches Provides choices for how to process and evaluate large unstructured text datasets Learn to apply the TensorFlow toolbox to specific tasks in the most interesting field in artificial intelligence Book Description Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks. What you will learn Core concepts of NLP and various approaches to natural language processing How to solve NLP tasks by applying TensorFlow functions to create neural networks Strategies to process large amounts of data into word representations that can be used by deep learning applications Techniques for performing sentence classification and language generation using CNNs and RNNs About employing state-of-the art advanced RNNs, like long short-term memory, to solve complex text generation tasks How to write automatic translation programs and implement an actual neural machine translator from scratch The trends and innovations that are paving the future in NLP Who this book is for This book is for Python developers with a strong interest in deep learning, who want to learn how to leverage TensorFlow to simplify NLP tasks. Fundamental Python skills are assumed, as well as some knowledge of machine learning and undergraduate-level calculus and linear algebra. No previous natural language processing experience required, although some background in NLP or computational linguistics will be helpful.

Deep Learning for Natural Language Processing

Deep Learning for Natural Language Processing
Author :
Publisher : Machine Learning Mastery
Total Pages : 413
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Synopsis Deep Learning for Natural Language Processing by : Jason Brownlee

Deep learning methods are achieving state-of-the-art results on challenging machine learning problems such as describing photos and translating text from one language to another. In this new laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about natural language processing. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what natural language processing is, the promise of deep learning in the field, how to clean and prepare text data for modeling, and how to develop deep learning models for your own natural language processing projects.

Introduction to Natural Language Processing

Introduction to Natural Language Processing
Author :
Publisher : MIT Press
Total Pages : 536
Release :
ISBN-10 : 9780262354578
ISBN-13 : 0262354578
Rating : 4/5 (78 Downloads)

Synopsis Introduction to Natural Language Processing by : Jacob Eisenstein

A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.

Speech & Language Processing

Speech & Language Processing
Author :
Publisher : Pearson Education India
Total Pages : 912
Release :
ISBN-10 : 8131716724
ISBN-13 : 9788131716724
Rating : 4/5 (24 Downloads)

Synopsis Speech & Language Processing by : Dan Jurafsky

Deep Learning for Natural Language Processing

Deep Learning for Natural Language Processing
Author :
Publisher : Simon and Schuster
Total Pages : 294
Release :
ISBN-10 : 9781638353997
ISBN-13 : 1638353999
Rating : 4/5 (97 Downloads)

Synopsis Deep Learning for Natural Language Processing by : Stephan Raaijmakers

Explore the most challenging issues of natural language processing, and learn how to solve them with cutting-edge deep learning! Inside Deep Learning for Natural Language Processing you’ll find a wealth of NLP insights, including: An overview of NLP and deep learning One-hot text representations Word embeddings Models for textual similarity Sequential NLP Semantic role labeling Deep memory-based NLP Linguistic structure Hyperparameters for deep NLP Deep learning has advanced natural language processing to exciting new levels and powerful new applications! For the first time, computer systems can achieve "human" levels of summarizing, making connections, and other tasks that require comprehension and context. Deep Learning for Natural Language Processing reveals the groundbreaking techniques that make these innovations possible. Stephan Raaijmakers distills his extensive knowledge into useful best practices, real-world applications, and the inner workings of top NLP algorithms. About the technology Deep learning has transformed the field of natural language processing. Neural networks recognize not just words and phrases, but also patterns. Models infer meaning from context, and determine emotional tone. Powerful deep learning-based NLP models open up a goldmine of potential uses. About the book Deep Learning for Natural Language Processing teaches you how to create advanced NLP applications using Python and the Keras deep learning library. You’ll learn to use state-of the-art tools and techniques including BERT and XLNET, multitask learning, and deep memory-based NLP. Fascinating examples give you hands-on experience with a variety of real world NLP applications. Plus, the detailed code discussions show you exactly how to adapt each example to your own uses! What's inside Improve question answering with sequential NLP Boost performance with linguistic multitask learning Accurately interpret linguistic structure Master multiple word embedding techniques About the reader For readers with intermediate Python skills and a general knowledge of NLP. No experience with deep learning is required. About the author Stephan Raaijmakers is professor of Communicative AI at Leiden University and a senior scientist at The Netherlands Organization for Applied Scientific Research (TNO). Table of Contents PART 1 INTRODUCTION 1 Deep learning for NLP 2 Deep learning and language: The basics 3 Text embeddings PART 2 DEEP NLP 4 Textual similarity 5 Sequential NLP 6 Episodic memory for NLP PART 3 ADVANCED TOPICS 7 Attention 8 Multitask learning 9 Transformers 10 Applications of Transformers: Hands-on with BERT

Neural Network Methods in Natural Language Processing

Neural Network Methods in Natural Language Processing
Author :
Publisher : Morgan & Claypool Publishers
Total Pages : 311
Release :
ISBN-10 : 9781627052955
ISBN-13 : 162705295X
Rating : 4/5 (55 Downloads)

Synopsis Neural Network Methods in Natural Language Processing by : Yoav Goldberg

Neural networks are a family of powerful machine learning models and this book focuses on their application to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.