Morphological and Property Analyses of Multicomponent Block Copolymer Nanocomposites Gels

Morphological and Property Analyses of Multicomponent Block Copolymer Nanocomposites Gels
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:656416840
ISBN-13 :
Rating : 4/5 (40 Downloads)

Synopsis Morphological and Property Analyses of Multicomponent Block Copolymer Nanocomposites Gels by :

Thermoplastic elastomer gels (TPEGs), molecular networks composed of a microphase-separated multiblock copolymer swollen to a large extent by a low-volatility midblock-selective solvent, are ubiquitous in a wide range of contemporary technologies, including home and office products, athletic equipment and telecommunications devices. In this work, we investigate the effect of several network-forming nanoscale modifiers -- two different silica nanoparticles, 3 different nanoclays, a multiwalled carbon nanotube and a semicrystalline homopolymer -- on the property development of a TPEG prepared from a microphase-ordered poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) triblock copolymer imbibed with an EB-compatible aliphatic mineral oil. Dynamic rheological measurements of the resultant nanocomposite TPEGs (NCTPEGs) confirm that addition of these modifiers tends to increase the linear viscoelastic threshold, the dynamic elastic modulus (G') and the flow onset temperature (where G' plummets) of the parent TPEG. Variable-temperature stress-relaxation studies indicate that these NCTPEGs undergo substantial relaxation irrespective of added modifier at temperatures above ~60°C. Complementary x-ray diffraction analysis reveals that the nanoclay particles used to generate three series of the NCTPEGs examined here are swollen with copolymer and/or solvent and are therefore intercalated.

Block Copolymers in Nanoscience

Block Copolymers in Nanoscience
Author :
Publisher : John Wiley & Sons
Total Pages : 447
Release :
ISBN-10 : 9783527610563
ISBN-13 : 3527610561
Rating : 4/5 (63 Downloads)

Synopsis Block Copolymers in Nanoscience by : Massimo Lazzari

This first book to take a detailed look at one of the key focal points where nanotechnology and polymers meet provides both an introductory view for beginners as well as in-depth knowledge for specialists in the various research areas involved. It investigates all types of application for block copolymers: as tools for fabricating other nanomaterials, as structural components in hybrid materials and nanocomposites, and as functional materials. The multidisciplinary approach covers all stages from chemical synthesis and characterization, presenting applications from physics and chemistry to biology and medicine, such as micro- and nanolithography, membranes, optical labeling, drug delivery, as well as sensory and analytical uses.

Controlling Morphology of Multi-component Block Copolymer Based Materials

Controlling Morphology of Multi-component Block Copolymer Based Materials
Author :
Publisher :
Total Pages : 278
Release :
ISBN-10 : OCLC:428090877
ISBN-13 :
Rating : 4/5 (77 Downloads)

Synopsis Controlling Morphology of Multi-component Block Copolymer Based Materials by : Rafal Adam Mickiewicz

The ability of block copolymers to self-assemble into ordered microstructures has attracted much interest both from a pure scientific perspective and for their potential in numerous industrial applications. The microphase separation of block copolymers has been successfully exploited in a wide range of applications, such as templating and lithography, enhancement of mechanical properties, and nano reactor schemes. This thesis focuses on the characterization of the morphology in composite systems where one or more of the components is a block copolymer. In the first part of this thesis, binary blends of very high molecular weight diblock copolymers with a low molecular weight triblock copolymer are investigated. The high molecular weight diblock copolymers are very strongly segregating, with interaction parameter values, XN, in the range 470 - 1410. The phase diagram revealed a large miscibility gap for the blends, with macrophase separation into two distinct types of microphase separated domains and implied virtually no solubility of the much higher molecular weight diblocks in the triblock. For certain blend compositions, morphological transitions from the lamellar to cylindrical and bicontinuous structures were also observed, even though the overall composition in the blend would be expected to favor the lamellar microstructure. This was found to result from the compositional asymmetry of the triblock copolymer influencing the curvature of the inter-material dividing surface (IMDS). Finally, a strong segregation theory model was used to interpret the observed results. In the second part of this thesis the microstructure formation in nanocomposites based on a liquid crystalline side chain block copolymer (LCBCP) and gold nanoparticles was investigated. The location of the nanoparticles was found to not only depend on the surface chemistry of the gold nanoparticles, but also on the self-organization within the liquid crystalline domain of the LCBCP. The nanoparticles were excluded from the liquid crystalline domains due to the high free energy penalty of disrupting the smectic layering. The final location of the nanoparticles within the composite was determined by the nature of the stabilizing surface coating. The work presented in this thesis revealed a number of interesting tools which are useful for obtaining a wide range of morphologies in multi-component block copolymer systems.

Polymer Morphology

Polymer Morphology
Author :
Publisher : John Wiley & Sons
Total Pages : 472
Release :
ISBN-10 : 9781118452158
ISBN-13 : 1118452151
Rating : 4/5 (58 Downloads)

Synopsis Polymer Morphology by : Qipeng Guo

With a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods. • Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology • Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography • Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites • Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials

Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites

Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites
Author :
Publisher : Elsevier
Total Pages : 578
Release :
ISBN-10 : 9780128213582
ISBN-13 : 0128213582
Rating : 4/5 (82 Downloads)

Synopsis Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites by : Sabu Thomas

Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites: From Synthesis to Applications offers extensive coverage of polyhedral oligomeric silsesquioxanes and their nanocomposites, including their synthesis, characterization, interfacial interactions and advanced applications. Sections introduce essentials, information on their preparation and discussions on polymeric materials, including elastomers, thermoplastics, thermosetting polymers, polymer blends and IPNs. Further sections cover the latest analysis techniques, examine the properties of POSS-polymer nanocomposites, and discuss key application areas, such as biological, energy, defense, and space. Finally, issues surrounding industry implementation and lifecycle are explored. This is a valuable reference for researchers, scientists and advanced students in the areas of polymer composites and nanocomposites, polymer chemistry, polymer physics, polymer science, and materials science and engineering. In an industrial setting, this book will be of great interest to scientists, R&D professionals, and engineers across industries and disciplines. - Covers all aspects of polyhedral oligomeric silsesquioxanes (POSS) and their nanocomposites, including synthesis and characterization techniques, properties, analysis, applications and trends - Targets POSS nanocomposites, describing synthesis, characterization and the selection of POSS filler types according to polymeric material - Explains the preparation and utilization of POSS polymer nanocomposites for cutting-edge applications, including biological, energy, and defense field applications

Self-Healing Polymers

Self-Healing Polymers
Author :
Publisher : John Wiley & Sons
Total Pages : 638
Release :
ISBN-10 : 9783527670208
ISBN-13 : 3527670203
Rating : 4/5 (08 Downloads)

Synopsis Self-Healing Polymers by : Wolfgang H. Binder

Self-healing is a well-known phenomenon in nature: a broken bone merges after some time and if skin is damaged, the wound will stop bleeding and heals again. This concept can be mimicked in order to create polymeric materials with the ability to regenerate after they have suffered degradation or wear. Already realized applications are used in aerospace engineering, and current research in this fascinating field shows how different self-healing mechanisms proven successful by nature can be adapted to produce even more versatile materials. The book combines the knowledge of an international panel of experts in the field and provides the reader with chemical and physical concepts for self-healing polymers, including aspects of biomimetic processes of healing in nature. It shows how to design self-healing polymers and explains the dynamics in these systems. Different self-healing concepts such as encapsulated systems and supramolecular systems are detailed. Chapters on analysis and friction detection in self-healing polymers and on applications round off the book.