Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems

Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems
Author :
Publisher : American Mathematical Soc.
Total Pages : 330
Release :
ISBN-10 : 9780821889817
ISBN-13 : 0821889818
Rating : 4/5 (17 Downloads)

Synopsis Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems by : Gershon Kresin

The main goal of this book is to present results pertaining to various versions of the maximum principle for elliptic and parabolic systems of arbitrary order. In particular, the authors present necessary and sufficient conditions for validity of the classical maximum modulus principles for systems of second order and obtain sharp constants in inequalities of Miranda-Agmon type and in many other inequalities of a similar nature. Somewhat related to this topic are explicit formulas for the norms and the essential norms of boundary integral operators. The proofs are based on a unified approach using, on one hand, representations of the norms of matrix-valued integral operators whose target spaces are linear and finite dimensional, and, on the other hand, on solving certain finite dimensional optimization problems. This book reflects results obtained by the authors, and can be useful to research mathematicians and graduate students interested in partial differential equations.

Complex Analysis and Dynamical Systems VI

Complex Analysis and Dynamical Systems VI
Author :
Publisher : American Mathematical Soc.
Total Pages : 352
Release :
ISBN-10 : 9781470416539
ISBN-13 : 1470416530
Rating : 4/5 (39 Downloads)

Synopsis Complex Analysis and Dynamical Systems VI by : Matania Ben-Artzi

This volume contains the proceedings of the Sixth International Conference on Complex Analysis and Dynamical Systems, held from May 19-24, 2013, in Nahariya, Israel, in honor of David Shoikhet's sixtieth birthday. The papers in this volume range over a wide variety of topics in Partial Differential Equations, Differential Geometry, and the Radon Transform. Taken together, the articles collected here provide the reader with a panorama of activity in partial differential equations and general relativity, drawn by a number of leading figures in the field. They testify to the continued vitality of the interplay between classical and modern analysis. The companion volume (Contemporary Mathematics, Volume 667) is devoted to complex analysis, quasiconformal mappings, and complex dynamics. This book is co-published with Bar-Ilan University (Ramat-Gan, Israel).

The Maz’ya Anniversary Collection

The Maz’ya Anniversary Collection
Author :
Publisher : Birkhäuser
Total Pages : 370
Release :
ISBN-10 : 9783034886758
ISBN-13 : 3034886756
Rating : 4/5 (58 Downloads)

Synopsis The Maz’ya Anniversary Collection by : Jürgen Rossmann

The contributions in this volume are dedicated to Vladimir G. Maz'ya and are par tially based on talks given at the conference "Functional Analysis, Partial Differ ential Equations, and Applications", which took place at the University of Rostock from August 31 to September 4, 1998, to honour Prof. Maz'ya. This conference (a satellite meeting of the ICM) gave an opportunity to many friends and colleagues from all over the world to honour him. This academic community is very large. The scientific field of Prof. Maz'ya is impressively broad, which is reflected in the variety of contributions included in the volumes. Vladimir Maz'ya is the author and co-author of many publications (see the list of publications at the end of this volume), the topics of which extend from functional analysis, function theory and numerical analysis to partial differential equations and their broad applications. Vladimir G. Maz'ya provided significant contributions, among others to the the ory of Sobolev spaces, the capacity theory, boundary integral methods, qualitative and asymptotic methods of analysis of linear and nonlinear elliptic differential equations, the Cauchy problem for elliptic and hyperbolic equations, the theory of multipliers in spaces of differentiable functions, maximum principles for elliptic and parabolic systems, and boundary value problems in domains with piecewise smooth boundaries. Surveys on Maz'ya's work in different fields of mathematics and areas, where he made essential contributions, form a major part of the present first volume of The Maz'ya Anniversary Collection.

Fokker–Planck–Kolmogorov Equations

Fokker–Planck–Kolmogorov Equations
Author :
Publisher : American Mathematical Society
Total Pages : 495
Release :
ISBN-10 : 9781470470098
ISBN-13 : 1470470098
Rating : 4/5 (98 Downloads)

Synopsis Fokker–Planck–Kolmogorov Equations by : Vladimir I. Bogachev

This book gives an exposition of the principal concepts and results related to second order elliptic and parabolic equations for measures, the main examples of which are Fokker–Planck–Kolmogorov equations for stationary and transition probabilities of diffusion processes. Existence and uniqueness of solutions are studied along with existence and Sobolev regularity of their densities and upper and lower bounds for the latter. The target readership includes mathematicians and physicists whose research is related to diffusion processes as well as elliptic and parabolic equations.

Singular Integral Operators, Quantitative Flatness, and Boundary Problems

Singular Integral Operators, Quantitative Flatness, and Boundary Problems
Author :
Publisher : Springer Nature
Total Pages : 605
Release :
ISBN-10 : 9783031082344
ISBN-13 : 3031082346
Rating : 4/5 (44 Downloads)

Synopsis Singular Integral Operators, Quantitative Flatness, and Boundary Problems by : Juan José Marín

This monograph provides a state-of-the-art, self-contained account on the effectiveness of the method of boundary layer potentials in the study of elliptic boundary value problems with boundary data in a multitude of function spaces. Many significant new results are explored in detail, with complete proofs, emphasizing and elaborating on the link between the geometric measure-theoretic features of an underlying surface and the functional analytic properties of singular integral operators defined on it. Graduate students, researchers, and professionals interested in a modern account of the topic of singular integral operators and boundary value problems – as well as those more generally interested in harmonic analysis, PDEs, and geometric analysis – will find this text to be a valuable addition to the mathematical literature.

Elliptic Differential Operators and Spectral Analysis

Elliptic Differential Operators and Spectral Analysis
Author :
Publisher : Springer
Total Pages : 324
Release :
ISBN-10 : 9783030021252
ISBN-13 : 3030021254
Rating : 4/5 (52 Downloads)

Synopsis Elliptic Differential Operators and Spectral Analysis by : D. E. Edmunds

This book deals with elliptic differential equations, providing the analytic background necessary for the treatment of associated spectral questions, and covering important topics previously scattered throughout the literature. Starting with the basics of elliptic operators and their naturally associated function spaces, the authors then proceed to cover various related topics of current and continuing importance. Particular attention is given to the characterisation of self-adjoint extensions of symmetric operators acting in a Hilbert space and, for elliptic operators, the realisation of such extensions in terms of boundary conditions. A good deal of material not previously available in book form, such as the treatment of the Schauder estimates, is included. Requiring only basic knowledge of measure theory and functional analysis, the book is accessible to graduate students and will be of interest to all researchers in partial differential equations. The reader will value its self-contained, thorough and unified presentation of the modern theory of elliptic operators.

Harmonic Analysis and Partial Differential Equations

Harmonic Analysis and Partial Differential Equations
Author :
Publisher : Springer Nature
Total Pages : 319
Release :
ISBN-10 : 9783031254246
ISBN-13 : 3031254244
Rating : 4/5 (46 Downloads)

Synopsis Harmonic Analysis and Partial Differential Equations by : Anatoly Golberg

Over the course of his distinguished career, Vladimir Maz'ya has made a number of groundbreaking contributions to numerous areas of mathematics, including partial differential equations, function theory, and harmonic analysis. The chapters in this volume - compiled on the occasion of his 80th birthday - are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.

The Laplace Equation

The Laplace Equation
Author :
Publisher : Springer
Total Pages : 669
Release :
ISBN-10 : 9783319743073
ISBN-13 : 3319743074
Rating : 4/5 (73 Downloads)

Synopsis The Laplace Equation by : Dagmar Medková

This book is devoted to boundary value problems of the Laplace equation on bounded and unbounded Lipschitz domains. It studies the Dirichlet problem, the Neumann problem, the Robin problem, the derivative oblique problem, the transmission problem, the skip problem and mixed problems. It also examines different solutions - classical, in Sobolev spaces, in Besov spaces, in homogeneous Sobolev spaces and in the sense of non-tangential limit. It also explains relations between different solutions. The book has been written in a way that makes it as readable as possible for a wide mathematical audience, and includes all the fundamental definitions and propositions from other fields of mathematics. This book is of interest to research students, as well as experts in partial differential equations and numerical analysis.

The Ricci Flow: Techniques and Applications

The Ricci Flow: Techniques and Applications
Author :
Publisher : American Mathematical Soc.
Total Pages : 397
Release :
ISBN-10 : 9780821849910
ISBN-13 : 0821849913
Rating : 4/5 (10 Downloads)

Synopsis The Ricci Flow: Techniques and Applications by : Bennett Chow

Ricci flow is a powerful technique using a heat-type equation to deform Riemannian metrics on manifolds to better metrics in the search for geometric decompositions. With the fourth part of their volume on techniques and applications of the theory, the authors discuss long-time solutions of the Ricci flow and related topics. In dimension 3, Perelman completed Hamilton's program to prove Thurston's geometrization conjecture. In higher dimensions the Ricci flow has remarkable properties, which indicates its usefulness to understand relations between the geometry and topology of manifolds. This book discusses recent developments on gradient Ricci solitons, which model the singularities developing under the Ricci flow. In the shrinking case there is a surprising rigidity which suggests the likelihood of a well-developed structure theory. A broader class of solutions is ancient solutions; the authors discuss the beautiful classification in dimension 2. In higher dimensions they consider both ancient and singular Type I solutions, which must have shrinking gradient Ricci soliton models. Next, Hamilton's theory of 3-dimensional nonsingular solutions is presented, following his original work. Historically, this theory initially connected the Ricci flow to the geometrization conjecture. From a dynamical point of view, one is interested in the stability of the Ricci flow. The authors discuss what is known about this basic problem. Finally, they consider the degenerate neckpinch singularity from both the numerical and theoretical perspectives. This book makes advanced material accessible to researchers and graduate students who are interested in the Ricci flow and geometric evolution equations and who have a knowledge of the fundamentals of the Ricci flow.

Persistence Theory: From Quiver Representations to Data Analysis

Persistence Theory: From Quiver Representations to Data Analysis
Author :
Publisher : American Mathematical Soc.
Total Pages : 229
Release :
ISBN-10 : 9781470434434
ISBN-13 : 1470434431
Rating : 4/5 (34 Downloads)

Synopsis Persistence Theory: From Quiver Representations to Data Analysis by : Steve Y. Oudot

Persistence theory emerged in the early 2000s as a new theory in the area of applied and computational topology. This book provides a broad and modern view of the subject, including its algebraic, topological, and algorithmic aspects. It also elaborates on applications in data analysis. The level of detail of the exposition has been set so as to keep a survey style, while providing sufficient insights into the proofs so the reader can understand the mechanisms at work. The book is organized into three parts. The first part is dedicated to the foundations of persistence and emphasizes its connection to quiver representation theory. The second part focuses on its connection to applications through a few selected topics. The third part provides perspectives for both the theory and its applications. The book can be used as a text for a course on applied topology or data analysis.