Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

Materials and Reliability Handbook for Semiconductor Optical and Electron Devices
Author :
Publisher : Springer Science & Business Media
Total Pages : 618
Release :
ISBN-10 : 9781461443360
ISBN-13 : 1461443369
Rating : 4/5 (60 Downloads)

Synopsis Materials and Reliability Handbook for Semiconductor Optical and Electron Devices by : Osamu Ueda

Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and reliability, which allow accurate prediction of reliability as well as the design specifically for improved reliability. The Handbook emphasizes physical mechanisms rather than an electrical definition of reliability. Accelerated aging is useful only if the failure mechanism is known. The Handbook also focuses on voltage and current acceleration stress mechanisms.

Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

Materials and Reliability Handbook for Semiconductor Optical and Electron Devices
Author :
Publisher : Springer Science & Business Media
Total Pages : 618
Release :
ISBN-10 : 9781461443377
ISBN-13 : 1461443377
Rating : 4/5 (77 Downloads)

Synopsis Materials and Reliability Handbook for Semiconductor Optical and Electron Devices by : Osamu Ueda

Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and reliability, which allow accurate prediction of reliability as well as the design specifically for improved reliability. The Handbook emphasizes physical mechanisms rather than an electrical definition of reliability. Accelerated aging is useful only if the failure mechanism is known. The Handbook also focuses on voltage and current acceleration stress mechanisms.

Reliability of Semiconductor Lasers and Optoelectronic Devices

Reliability of Semiconductor Lasers and Optoelectronic Devices
Author :
Publisher : Woodhead Publishing
Total Pages : 336
Release :
ISBN-10 : 9780128192559
ISBN-13 : 0128192550
Rating : 4/5 (59 Downloads)

Synopsis Reliability of Semiconductor Lasers and Optoelectronic Devices by : Robert Herrick

Reliability of Semiconductor Lasers and Optoelectronic Devices simplifies complex concepts of optoelectronics reliability with approachable introductory chapters and a focus on real-world applications. This book provides a brief look at the fundamentals of laser diodes, introduces reliability qualification, and then presents real-world case studies discussing the principles of reliability and what occurs when these rules are broken. Then this book comprehensively looks at optoelectronics devices and the defects that cause premature failure in them and how to control those defects. Key materials and devices are reviewed including silicon photonics, vertical-cavity surface-emitting lasers (VCSELs), InGaN LEDs and lasers, and AlGaN LEDs, covering the majority of optoelectronic devices that we use in our everyday lives, powering the Internet, telecommunication, solid-state lighting, illuminators, and many other applications. This book features contributions from experts in industry and academia working in these areas and includes numerous practical examples and case studies.This book is suitable for new entrants to the field of optoelectronics working in R&D. - Includes case studies and numerous examples showing best practices and common mistakes affecting optoelectronics reliability written by experts working in the industry - Features the first wide-ranging and comprehensive overview of fiber optics reliability engineering, covering all elements of the practice from building a reliability laboratory, qualifying new products, to improving reliability on mature products - Provides a look at the reliability issues and failure mechanisms for silicon photonics, VCSELs, InGaN LEDs and lasers, AIGaN LEDs, and more

Advanced Laser Diode Reliability

Advanced Laser Diode Reliability
Author :
Publisher : Elsevier
Total Pages : 270
Release :
ISBN-10 : 9780081010891
ISBN-13 : 0081010893
Rating : 4/5 (91 Downloads)

Synopsis Advanced Laser Diode Reliability by : Massimo Vanzi

Advanced Laser Diode Reliability focuses on causes and effects of degradations of state-of-the-art semiconductor laser diodes. It aims to provide a tool for linking practical measurements to physical diagnostics. To this purpose, it reviews the current technologies, addressing their peculiar details that can promote specific failure mechanisms. Two sections will support this kernel: a) Failure Analysis techniques, procedures and examples; b) Device-oriented laser modelling and parameter extraction. - Talk about Natural continuity with the most widespread existing textbooks, published by Mitsuo Fukuda - Present the extension to new failure mechanisms, new technologies, new application fields, new environments - Introduce a specific self-consistent model for the physical description of a laser diode, expressed in terms of practically measurable quantities

Single Crystals of Electronic Materials

Single Crystals of Electronic Materials
Author :
Publisher : Woodhead Publishing
Total Pages : 596
Release :
ISBN-10 : 9780081020975
ISBN-13 : 008102097X
Rating : 4/5 (75 Downloads)

Synopsis Single Crystals of Electronic Materials by : Roberto Fornari

Single Crystals of Electronic Materials: Growth and Properties is a complete overview of the state-of-the-art growth of bulk semiconductors. It is not only a valuable update on the body of information on crystal growth of well-established electronic materials, such as silicon, III-V, II-VI and IV-VI semiconductors, but also includes chapters on novel semiconductors, such as wide bandgap oxides like ZnO, Ga2, O3, In2, O3, Al2, O3, nitrides (AIN and GaN), and diamond. Each chapter focuses on a specific material, providing a comprehensive overview that includes applications and requirements, thermodynamic properties, schematics of growth methods, and more. - Presents the latest research and most comprehensive overview of both standard and novel semiconductors - Provides a systematic examination of important electronic materials, including their applications, growth methods, properties, technologies and defect and doping issues - Takes a close look at emerging materials, including wide bandgap oxides, nitrides and diamond

Electron–Lattice Interactions in Semiconductors

Electron–Lattice Interactions in Semiconductors
Author :
Publisher : CRC Press
Total Pages : 256
Release :
ISBN-10 : 9781000037654
ISBN-13 : 1000037657
Rating : 4/5 (54 Downloads)

Synopsis Electron–Lattice Interactions in Semiconductors by : Yuzo Shinozuka

This book presents theoretical treatments on various electronic and atomic processes in non-metallic materials from a unified point of view. It starts with the basic properties of semiconductors, treating the system as a macroscopic association of electrons and ions. In their ground state, fruitful results are derived, such as the band theory for electrons in a periodic lattice and a useful concept of “hole.” The electron–lattice interaction is then introduced as a dynamical response of condensed matter when it is electronically excited. With the aid of proper configuration coordinate diagrams, various phenomena are precisely examined, including carrier scattering, polaron formation, lattice relaxation, Stokes shift and phonon side band in optical spectrum, intrinsic and extrinsic self-trapping, and structural changes. The book provides readers a deep understanding of the physics underlying these phenomena and excellent insight to develop their further research. Graduate students who have finished the basic study on solid-state physics and quantum mechanics and research scientists and engineers in materials science and engineering will benefit immensely from it.

Heteroepitaxy of Semiconductors

Heteroepitaxy of Semiconductors
Author :
Publisher : CRC Press
Total Pages : 660
Release :
ISBN-10 : 9781482254365
ISBN-13 : 1482254360
Rating : 4/5 (65 Downloads)

Synopsis Heteroepitaxy of Semiconductors by : John E. Ayers

In the past ten years, heteroepitaxy has continued to increase in importance with the explosive growth of the electronics industry and the development of a myriad of heteroepitaxial devices for solid state lighting, green energy, displays, communications, and digital computing. Our ever-growing understanding of the basic physics and chemistry underlying heteroepitaxy, especially lattice relaxation and dislocation dynamic, has enabled an ever-increasing emphasis on metamorphic devices. To reflect this focus, two all-new chapters have been included in this new edition. One chapter addresses metamorphic buffer layers, and the other covers metamorphic devices. The remaining seven chapters have been revised extensively with new material on crystal symmetry and relationships, III-nitride materials, lattice relaxation physics and models, in-situ characterization, and reciprocal space maps.

Physics of Semiconductor Devices

Physics of Semiconductor Devices
Author :
Publisher : Springer Science & Business Media
Total Pages : 841
Release :
ISBN-10 : 9783319030029
ISBN-13 : 3319030027
Rating : 4/5 (29 Downloads)

Synopsis Physics of Semiconductor Devices by : V. K. Jain

The purpose of this workshop is to spread the vast amount of information available on semiconductor physics to every possible field throughout the scientific community. As a result, the latest findings, research and discoveries can be quickly disseminated. This workshop provides all participating research groups with an excellent platform for interaction and collaboration with other members of their respective scientific community. This workshop’s technical sessions include various current and significant topics for applications and scientific developments, including • Optoelectronics • VLSI & ULSI Technology • Photovoltaics • MEMS & Sensors • Device Modeling and Simulation • High Frequency/ Power Devices • Nanotechnology and Emerging Areas • Organic Electronics • Displays and Lighting Many eminent scientists from various national and international organizations are actively participating with their latest research works and also equally supporting this mega event by joining the various organizing committees.

Fiber Bragg Grating Based Sensors and Systems

Fiber Bragg Grating Based Sensors and Systems
Author :
Publisher : MDPI
Total Pages : 228
Release :
ISBN-10 : 9783036512860
ISBN-13 : 3036512861
Rating : 4/5 (60 Downloads)

Synopsis Fiber Bragg Grating Based Sensors and Systems by : Oleg Morozov

This book is a collection of papers that originated as a Special Issue, focused on some recent advances related to fiber Bragg grating-based sensors and systems. Conventionally, this book can be divided into three parts: intelligent systems, new types of sensors, and original interrogators. The intelligent systems presented include evaluation of strain transition properties between cast-in FBGs and cast aluminum during uniaxial straining, multi-point strain measurements on a containment vessel, damage detection methods based on long-gauge FBG for highway bridges, evaluation of a coupled sequential approach for rotorcraft landing simulation, wearable hand modules and real-time tracking algorithms for measuring finger joint angles of different hand sizes, and glaze icing detection of 110 kV composite insulators. New types of sensors are reflected in multi-addressed fiber Bragg structures for microwave–photonic sensor systems, its applications in load-sensing wheel hub bearings, and more complex influence in problems of generation of vortex optical beams based on chiral fiber-optic periodic structures. Original interrogators include research in optical designs with curved detectors for FBG interrogation monitors; demonstration of a filterless, multi-point, and temperature-independent FBG dynamical demodulator using pulse-width modulation; and dual wavelength differential detection of FBG sensors with a pulsed DFB laser.

Ionizing Radiation Effects and Applications

Ionizing Radiation Effects and Applications
Author :
Publisher : BoD – Books on Demand
Total Pages : 188
Release :
ISBN-10 : 9789535139539
ISBN-13 : 9535139533
Rating : 4/5 (39 Downloads)

Synopsis Ionizing Radiation Effects and Applications by : Boualem Djezzar

The benefits of ionizing radiations have been largely demonstrated through many achievements of human life. Understanding the fundamental elementary interactions of ionizing radiations with material has allowed the development of various applications needed by different industries. This book draws some facets of their applications, such as hardening process for semiconductor devices, biomedical imaging by radiation luminescent quantum dots, hydrogen gas detection by Raman lidar sensor for explosion risk assessment, water and wastewater purification by radiation treatment for environment, doping by the neutron transmutation doping for the semiconductor industry, and polymerization by irradiation, which is useful for industries requiring resistant and protective coating. I wish the chapters of this book can provide some helpful information on ionizing radiation applications.