Mastering Ipython 40
Download Mastering Ipython 40 full books in PDF, epub, and Kindle. Read online free Mastering Ipython 40 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Thomas Bitterman |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 382 |
Release |
: 2016-05-30 |
ISBN-10 |
: 9781785884153 |
ISBN-13 |
: 1785884158 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Mastering IPython 4.0 by : Thomas Bitterman
Get to grips with the advanced concepts of interactive computing to make the most out of IPython About This Book Most updated book on Interactive computing with IPython 4.0; Detailed, example-rich guide that lets you use the most advanced level interactive programming with IPython; Get flexible interactive programming with IPython using this comprehensive guide Who This Book Is For This book is for IPython developers who want to make the most of IPython and perform advanced scientific computing with IPython utilizing the ease of interactive computing. It is ideal for users who wish to learn about the interactive and parallel computing properties of IPython 4.0, along with its integration with third-party tools and concepts such as testing and documenting results. What You Will Learn Develop skills to use IPython for high performance computing (HPC) Understand the IPython interactive shell Use XeroMQ and MPI to pass messages Integrate third-party tools like R, Julia, and JavaScript with IPython Visualize the data Acquire knowledge to test and document the data Get to grips with the recent developments in the Jupyter notebook system In Detail IPython is an interactive computational environment in which you can combine code execution, rich text, mathematics, plots, and rich media. This book will get IPython developers up to date with the latest advancements in IPython and dive deep into interactive computing with IPython. This an advanced guide on interactive and parallel computing with IPython will explore advanced visualizations and high-performance computing with IPython in detail. You will quickly brush up your knowledge of IPython kernels and wrapper kernels, then we'll move to advanced concepts such as testing, Sphinx, JS events, interactive work, and the ZMQ cluster. The book will cover topics such as IPython Console Lexer, advanced configuration, and third-party tools. By the end of this book, you will be able to use IPython for interactive and parallel computing in a high-performance computing environment. Style and approach This is a comprehensive guide to IPython for interactive, exploratory and parallel computing. It will let the IPython get up to date with the latest advancements in IPython and dive deeper into interactive computing with IPython
Author |
: Yves J. Hilpisch |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 682 |
Release |
: 2018-12-05 |
ISBN-10 |
: 9781492024293 |
ISBN-13 |
: 1492024295 |
Rating |
: 4/5 (93 Downloads) |
Synopsis Python for Finance by : Yves J. Hilpisch
The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
Author |
: Rick van Hattem |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 711 |
Release |
: 2022-05-20 |
ISBN-10 |
: 9781800202108 |
ISBN-13 |
: 1800202105 |
Rating |
: 4/5 (08 Downloads) |
Synopsis Mastering Python by : Rick van Hattem
Use advanced features of Python to write high-quality, readable code and packages Key Features Extensively updated for Python 3.10 with new chapters on design patterns, scientific programming, machine learning, and interactive Python Shape your scripts using key concepts like concurrency, performance optimization, asyncio, and multiprocessing Learn how advanced Python features fit together to produce maintainable code Book Description Even if you find writing Python code easy, writing code that is efficient, maintainable, and reusable is not so straightforward. Many of Python's capabilities are underutilized even by more experienced programmers. Mastering Python, Second Edition, is an authoritative guide to understanding advanced Python programming so you can write the highest quality code. This new edition has been extensively revised and updated with exercises, four new chapters and updates up to Python 3.10. Revisit important basics, including Pythonic style and syntax and functional programming. Avoid common mistakes made by programmers of all experience levels. Make smart decisions about the best testing and debugging tools to use, optimize your code's performance across multiple machines and Python versions, and deploy often-forgotten Python features to your advantage. Get fully up to speed with asyncio and stretch the language even further by accessing C functions with simple Python calls. Finally, turn your new-and-improved code into packages and share them with the wider Python community. If you are a Python programmer wanting to improve your code quality and readability, this Python book will make you confident in writing high-quality scripts and taking on bigger challenges What you will learn Write beautiful Pythonic code and avoid common Python coding mistakes Apply the power of decorators, generators, coroutines, and metaclasses Use different testing systems like pytest, unittest, and doctest Track and optimize application performance for both memory and CPU usage Debug your applications with PDB, Werkzeug, and faulthandler Improve your performance through asyncio, multiprocessing, and distributed computing Explore popular libraries like Dask, NumPy, SciPy, pandas, TensorFlow, and scikit-learn Extend Python's capabilities with C/C++ libraries and system calls Who this book is for This book will benefit more experienced Python programmers who wish to upskill, serving as a reference for best practices and some of the more intricate Python techniques. Even if you have been using Python for years, chances are that you haven't yet encountered every topic discussed in this book. A good understanding of Python programming is necessary
Author |
: Duncan M. McGreggor |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 292 |
Release |
: 2015-06-29 |
ISBN-10 |
: 9781783987559 |
ISBN-13 |
: 1783987553 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Mastering matplotlib by : Duncan M. McGreggor
matplotlib is a Python plotting library that provides a large feature set for a multitude of platforms. Given the depth of the library's legacy and the variety of related open source projects, gaining expert knowledge can be a time-consuming and often confusing process. You'll begin your exciting journey learning about the skills that are necessary in leading technical teams for a visualization project or to become a matplotlib contributor. Supported by highly-detailed IPython Notebooks, this book takes you through the conceptual components underlying the library and then provides a detailed overview of its APIs. From there, you will learn about event handling and how to code for interactive plots. Next you will move on to customization techniques, local configuration of matplotib, and then deployments in Cloud environments. The adventure culminates in an exploration of big data visualization and matplotlib clustering.
Author |
: Wes McKinney |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 553 |
Release |
: 2017-09-25 |
ISBN-10 |
: 9781491957615 |
ISBN-13 |
: 1491957611 |
Rating |
: 4/5 (15 Downloads) |
Synopsis Python for Data Analysis by : Wes McKinney
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Author |
: Hemant Kumar Mehta |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 301 |
Release |
: 2015-09-23 |
ISBN-10 |
: 9781783288830 |
ISBN-13 |
: 1783288833 |
Rating |
: 4/5 (30 Downloads) |
Synopsis Mastering Python Scientific Computing by : Hemant Kumar Mehta
A complete guide for Python programmers to master scientific computing using Python APIs and tools About This Book The basics of scientific computing to advanced concepts involving parallel and large scale computation are all covered. Most of the Python APIs and tools used in scientific computing are discussed in detail The concepts are discussed with suitable example programs Who This Book Is For If you are a Python programmer and want to get your hands on scientific computing, this book is for you. The book expects you to have had exposure to various concepts of Python programming. What You Will Learn Fundamentals and components of scientific computing Scientific computing data management Performing numerical computing using NumPy and SciPy Concepts and programming for symbolic computing using SymPy Using the plotting library matplotlib for data visualization Data analysis and visualization using Pandas, matplotlib, and IPython Performing parallel and high performance computing Real-life case studies and best practices of scientific computing In Detail In today's world, along with theoretical and experimental work, scientific computing has become an important part of scientific disciplines. Numerical calculations, simulations and computer modeling in this day and age form the vast majority of both experimental and theoretical papers. In the scientific method, replication and reproducibility are two important contributing factors. A complete and concrete scientific result should be reproducible and replicable. Python is suitable for scientific computing. A large community of users, plenty of help and documentation, a large collection of scientific libraries and environments, great performance, and good support makes Python a great choice for scientific computing. At present Python is among the top choices for developing scientific workflow and the book targets existing Python developers to master this domain using Python. The main things to learn in the book are the concept of scientific workflow, managing scientific workflow data and performing computation on this data using Python. The book discusses NumPy, SciPy, SymPy, matplotlib, Pandas and IPython with several example programs. Style and approach This book follows a hands-on approach to explain the complex concepts related to scientific computing. It details various APIs using appropriate examples.
Author |
: Ashish Kumar |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 658 |
Release |
: 2019-10-25 |
ISBN-10 |
: 9781789343359 |
ISBN-13 |
: 1789343356 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Mastering pandas by : Ashish Kumar
Perform advanced data manipulation tasks using pandas and become an expert data analyst. Key FeaturesManipulate and analyze your data expertly using the power of pandasWork with missing data and time series data and become a true pandas expertIncludes expert tips and techniques on making your data analysis tasks easierBook Description pandas is a popular Python library used by data scientists and analysts worldwide to manipulate and analyze their data. This book presents useful data manipulation techniques in pandas to perform complex data analysis in various domains. An update to our highly successful previous edition with new features, examples, updated code, and more, this book is an in-depth guide to get the most out of pandas for data analysis. Designed for both intermediate users as well as seasoned practitioners, you will learn advanced data manipulation techniques, such as multi-indexing, modifying data structures, and sampling your data, which allow for powerful analysis and help you gain accurate insights from it. With the help of this book, you will apply pandas to different domains, such as Bayesian statistics, predictive analytics, and time series analysis using an example-based approach. And not just that; you will also learn how to prepare powerful, interactive business reports in pandas using the Jupyter notebook. By the end of this book, you will learn how to perform efficient data analysis using pandas on complex data, and become an expert data analyst or data scientist in the process. What you will learnSpeed up your data analysis by importing data into pandasKeep relevant data points by selecting subsets of your dataCreate a high-quality dataset by cleaning data and fixing missing valuesCompute actionable analytics with grouping and aggregation in pandasMaster time series data analysis in pandasMake powerful reports in pandas using Jupyter notebooksWho this book is for This book is for data scientists, analysts and Python developers who wish to explore advanced data analysis and scientific computing techniques using pandas. Some fundamental understanding of Python programming and familiarity with the basic data analysis concepts is all you need to get started with this book.
Author |
: Joseph Babcock |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 335 |
Release |
: 2016-08-31 |
ISBN-10 |
: 9781785889820 |
ISBN-13 |
: 1785889826 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Mastering Predictive Analytics with Python by : Joseph Babcock
Exploit the power of data in your business by building advanced predictive modeling applications with Python About This Book Master open source Python tools to build sophisticated predictive models Learn to identify the right machine learning algorithm for your problem with this forward-thinking guide Grasp the major methods of predictive modeling and move beyond the basics to a deeper level of understanding Who This Book Is For This book is designed for business analysts, BI analysts, data scientists, or junior level data analysts who are ready to move from a conceptual understanding of advanced analytics to an expert in designing and building advanced analytics solutions using Python. You're expected to have basic development experience with Python. What You Will Learn Gain an insight into components and design decisions for an analytical application Master the use Python notebooks for exploratory data analysis and rapid prototyping Get to grips with applying regression, classification, clustering, and deep learning algorithms Discover the advanced methods to analyze structured and unstructured data Find out how to deploy a machine learning model in a production environment Visualize the performance of models and the insights they produce Scale your solutions as your data grows using Python Ensure the robustness of your analytic applications by mastering the best practices of predictive analysis In Detail The volume, diversity, and speed of data available has never been greater. Powerful machine learning methods can unlock the value in this information by finding complex relationships and unanticipated trends. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications to deliver insights that are of tremendous value to their organizations. In Mastering Predictive Analytics with Python, you will learn the process of turning raw data into powerful insights. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications and how to quickly apply these methods to your own data to create robust and scalable prediction services. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates not only how these methods work, but how to implement them in practice. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring the insights of predictive modeling to life Style and approach This book emphasizes on explaining methods through example data and code, showing you templates that you can quickly adapt to your own use cases. It focuses on both a practical application of sophisticated algorithms and the intuitive understanding necessary to apply the correct method to the problem at hand. Through visual examples, it also demonstrates how to convey insights through insightful charts and reporting.
Author |
: John M. Stewart |
Publisher |
: Cambridge University Press |
Total Pages |
: 272 |
Release |
: 2017-07-20 |
ISBN-10 |
: 9781316641231 |
ISBN-13 |
: 1316641236 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Python for Scientists by : John M. Stewart
Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively.
Author |
: Hans Petter Langtangen |
Publisher |
: Springer |
Total Pages |
: 942 |
Release |
: 2016-07-28 |
ISBN-10 |
: 9783662498873 |
ISBN-13 |
: 3662498871 |
Rating |
: 4/5 (73 Downloads) |
Synopsis A Primer on Scientific Programming with Python by : Hans Petter Langtangen
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015