Python For Scientists
Download Python For Scientists full books in PDF, epub, and Kindle. Read online free Python For Scientists ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: John M. Stewart |
Publisher |
: Cambridge University Press |
Total Pages |
: 272 |
Release |
: 2017-07-20 |
ISBN-10 |
: 9781316641231 |
ISBN-13 |
: 1316641236 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Python for Scientists by : John M. Stewart
Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively.
Author |
: Johnny Wei-Bing Lin |
Publisher |
: Cambridge University Press |
Total Pages |
: 767 |
Release |
: 2022-07-07 |
ISBN-10 |
: 9781108701129 |
ISBN-13 |
: 1108701124 |
Rating |
: 4/5 (29 Downloads) |
Synopsis An Introduction to Python Programming for Scientists and Engineers by : Johnny Wei-Bing Lin
Textbook that uses examples and Jupyter notebooks from across the sciences and engineering to teach Python programming.
Author |
: Hans Petter Langtangen |
Publisher |
: Springer |
Total Pages |
: 942 |
Release |
: 2016-07-28 |
ISBN-10 |
: 9783662498873 |
ISBN-13 |
: 3662498871 |
Rating |
: 4/5 (73 Downloads) |
Synopsis A Primer on Scientific Programming with Python by : Hans Petter Langtangen
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015
Author |
: Phillip D. Brooker |
Publisher |
: SAGE |
Total Pages |
: 370 |
Release |
: 2019-12-09 |
ISBN-10 |
: 9781526486349 |
ISBN-13 |
: 1526486342 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Programming with Python for Social Scientists by : Phillip D. Brooker
As data become ′big′, fast and complex, the software and computing tools needed to manage and analyse them are rapidly developing. Social scientists need new tools to meet these challenges, tackle big datasets, while also developing a more nuanced understanding of - and control over - how these computing tools and algorithms are implemented. Programming with Python for Social Scientists offers a vital foundation to one of the most popular programming tools in computer science, specifically for social science researchers, assuming no prior coding knowledge. It guides you through the full research process, from question to publication, including: the fundamentals of why and how to do your own programming in social scientific research, questions of ethics and research design, a clear, easy to follow ′how-to′ guide to using Python, with a wide array of applications such as data visualisation, social media data research, social network analysis, and more. Accompanied by numerous code examples, screenshots, sample data sources, this is the textbook for social scientists looking for a complete introduction to programming with Python and incorporating it into their research design and analysis.
Author |
: David J. Pine |
Publisher |
: CRC Press |
Total Pages |
: 444 |
Release |
: 2024-09-23 |
ISBN-10 |
: 9781040119570 |
ISBN-13 |
: 1040119573 |
Rating |
: 4/5 (70 Downloads) |
Synopsis Introduction to Python for Science and Engineering by : David J. Pine
Introduction to Python for Science and Engineering offers a quick and incisive introduction to the Python programming language for use in any science or engineering discipline. The approach is pedagogical and “bottom up,” which means starting with examples and extracting more general principles from that experience. No prior programming experience is assumed. Readers will learn the basics of Python syntax, data structures, input and output, conditionals and loops, user-defined functions, plotting, animation, and visualization. They will also learn how to use Python for numerical analysis, including curve fitting, random numbers, linear algebra, solutions to nonlinear equations, numerical integration, solutions to differential equations, and fast Fourier transforms. Readers learn how to interact and program with Python using JupyterLab and Spyder, two simple and widely used integrated development environments. All the major Python libraries for science and engineering are covered, including NumPy, SciPy, Matplotlib, and Pandas. Other packages are also introduced, including Numba, which can render Python numerical calculations as fast as compiled computer languages such as C but without their complex overhead.
Author |
: Joakim Sundnes |
Publisher |
: |
Total Pages |
: 157 |
Release |
: 2020 |
ISBN-10 |
: 9783030503567 |
ISBN-13 |
: 3030503569 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Introduction to Scientific Programming with Python by : Joakim Sundnes
This open access book offers an initial introduction to programming for scientific and computational applications using the Python programming language. The presentation style is compact and example-based, making it suitable for students and researchers with little or no prior experience in programming. The book uses relevant examples from mathematics and the natural sciences to present programming as a practical toolbox that can quickly enable readers to write their own programs for data processing and mathematical modeling. These tools include file reading, plotting, simple text analysis, and using NumPy for numerical computations, which are fundamental building blocks of all programs in data science and computational science. At the same time, readers are introduced to the fundamental concepts of programming, including variables, functions, loops, classes, and object-oriented programming. Accordingly, the book provides a sound basis for further computer science and programming studies.
Author |
: David Kopec |
Publisher |
: Simon and Schuster |
Total Pages |
: 262 |
Release |
: 2020-12-21 |
ISBN-10 |
: 9781638356547 |
ISBN-13 |
: 1638356548 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Classic Computer Science Problems in Java by : David Kopec
Sharpen your coding skills by exploring established computer science problems! Classic Computer Science Problems in Java challenges you with time-tested scenarios and algorithms. Summary Sharpen your coding skills by exploring established computer science problems! Classic Computer Science Problems in Java challenges you with time-tested scenarios and algorithms. You’ll work through a series of exercises based in computer science fundamentals that are designed to improve your software development abilities, improve your understanding of artificial intelligence, and even prepare you to ace an interview. As you work through examples in search, clustering, graphs, and more, you'll remember important things you've forgotten and discover classic solutions to your "new" problems! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Whatever software development problem you’re facing, odds are someone has already uncovered a solution. This book collects the most useful solutions devised, guiding you through a variety of challenges and tried-and-true problem-solving techniques. The principles and algorithms presented here are guaranteed to save you countless hours in project after project. About the book Classic Computer Science Problems in Java is a master class in computer programming designed around 55 exercises that have been used in computer science classrooms for years. You’ll work through hands-on examples as you explore core algorithms, constraint problems, AI applications, and much more. What's inside Recursion, memoization, and bit manipulation Search, graph, and genetic algorithms Constraint-satisfaction problems K-means clustering, neural networks, and adversarial search About the reader For intermediate Java programmers. About the author David Kopec is an assistant professor of Computer Science and Innovation at Champlain College in Burlington, Vermont. Table of Contents 1 Small problems 2 Search problems 3 Constraint-satisfaction problems 4 Graph problems 5 Genetic algorithms 6 K-means clustering 7 Fairly simple neural networks 8 Adversarial search 9 Miscellaneous problems 10 Interview with Brian Goetz
Author |
: Qingkai Kong |
Publisher |
: Academic Press |
Total Pages |
: 482 |
Release |
: 2020-11-27 |
ISBN-10 |
: 9780128195505 |
ISBN-13 |
: 0128195509 |
Rating |
: 4/5 (05 Downloads) |
Synopsis Python Programming and Numerical Methods by : Qingkai Kong
Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. - Includes tips, warnings and "try this" features within each chapter to help the reader develop good programming practice - Summaries at the end of each chapter allow for quick access to important information - Includes code in Jupyter notebook format that can be directly run online
Author |
: Juan Nunez-Iglesias |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 277 |
Release |
: 2017-08-11 |
ISBN-10 |
: 9781491922958 |
ISBN-13 |
: 1491922958 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Elegant SciPy by : Juan Nunez-Iglesias
Welcome to Scientific Python and its community. If you’re a scientist who programs with Python, this practical guide not only teaches you the fundamental parts of SciPy and libraries related to it, but also gives you a taste for beautiful, easy-to-read code that you can use in practice. You’ll learn how to write elegant code that’s clear, concise, and efficient at executing the task at hand. Throughout the book, you’ll work with examples from the wider scientific Python ecosystem, using code that illustrates principles outlined in the book. Using actual scientific data, you’ll work on real-world problems with SciPy, NumPy, Pandas, scikit-image, and other Python libraries. Explore the NumPy array, the data structure that underlies numerical scientific computation Use quantile normalization to ensure that measurements fit a specific distribution Represent separate regions in an image with a Region Adjacency Graph Convert temporal or spatial data into frequency domain data with the Fast Fourier Transform Solve sparse matrix problems, including image segmentations, with SciPy’s sparse module Perform linear algebra by using SciPy packages Explore image alignment (registration) with SciPy’s optimize module Process large datasets with Python data streaming primitives and the Toolz library
Author |
: Alex DeCaria |
Publisher |
: |
Total Pages |
: 346 |
Release |
: 2020-12-30 |
ISBN-10 |
: 0972903356 |
ISBN-13 |
: 9780972903356 |
Rating |
: 4/5 (56 Downloads) |
Synopsis Python Programming and Visualization for Scientists by : Alex DeCaria
A color-illustrated introduction and reference volume for the popular Python 3 language with an emphasis on scientific plotting and data analysis and relevant software modules, including numpy, matplotlib, cartopy, datetime, and pandas.