Logical and Relational Learning

Logical and Relational Learning
Author :
Publisher : Springer Science & Business Media
Total Pages : 395
Release :
ISBN-10 : 9783540688563
ISBN-13 : 3540688560
Rating : 4/5 (63 Downloads)

Synopsis Logical and Relational Learning by : Luc De Raedt

This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning.

Logical and Relational Learning

Logical and Relational Learning
Author :
Publisher : Springer Science & Business Media
Total Pages : 395
Release :
ISBN-10 : 9783540200406
ISBN-13 : 3540200401
Rating : 4/5 (06 Downloads)

Synopsis Logical and Relational Learning by : Luc De Raedt

This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning.

Statistical Relational Artificial Intelligence

Statistical Relational Artificial Intelligence
Author :
Publisher : Morgan & Claypool Publishers
Total Pages : 191
Release :
ISBN-10 : 9781627058421
ISBN-13 : 1627058427
Rating : 4/5 (21 Downloads)

Synopsis Statistical Relational Artificial Intelligence by : Luc De Raedt

An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.

An Inductive Logic Programming Approach to Statistical Relational Learning

An Inductive Logic Programming Approach to Statistical Relational Learning
Author :
Publisher : IOS Press
Total Pages : 258
Release :
ISBN-10 : 1586036742
ISBN-13 : 9781586036744
Rating : 4/5 (42 Downloads)

Synopsis An Inductive Logic Programming Approach to Statistical Relational Learning by : Kristian Kersting

Talks about Logic Programming, Uncertainty Reasoning and Machine Learning. This book includes definitions that circumscribe the area formed by extending Inductive Logic Programming to cases annotated with probability values. It investigates the approach of Learning from proofs and the issue of upgrading Fisher Kernels to Relational Fisher Kernels.

Probabilistic Inductive Logic Programming

Probabilistic Inductive Logic Programming
Author :
Publisher : Springer
Total Pages : 348
Release :
ISBN-10 : 9783540786528
ISBN-13 : 354078652X
Rating : 4/5 (28 Downloads)

Synopsis Probabilistic Inductive Logic Programming by : Luc De Raedt

This book provides an introduction to probabilistic inductive logic programming. It places emphasis on the methods based on logic programming principles and covers formalisms and systems, implementations and applications, as well as theory.

Relational Data Mining

Relational Data Mining
Author :
Publisher : Springer Science & Business Media
Total Pages : 422
Release :
ISBN-10 : 3540422897
ISBN-13 : 9783540422891
Rating : 4/5 (97 Downloads)

Synopsis Relational Data Mining by : Saso Dzeroski

As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.

Introduction to Statistical Relational Learning

Introduction to Statistical Relational Learning
Author :
Publisher : MIT Press
Total Pages : 602
Release :
ISBN-10 : 9780262538688
ISBN-13 : 0262538687
Rating : 4/5 (88 Downloads)

Synopsis Introduction to Statistical Relational Learning by : Lise Getoor

Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications. Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.

Advances in Artificial Intelligence - SBIA 2008

Advances in Artificial Intelligence - SBIA 2008
Author :
Publisher : Springer Science & Business Media
Total Pages : 304
Release :
ISBN-10 : 9783540881896
ISBN-13 : 3540881891
Rating : 4/5 (96 Downloads)

Synopsis Advances in Artificial Intelligence - SBIA 2008 by : Gerson Zaverucha

This book constitutes the refereed proceedings of the 19th Brazilian Symposium on Artificial Intelligence, SBIA 2008, held in Salvador, Brazil, in October 2008. The 27 revised full papers presented together with 3 invited lectures and 3 tutorials were carefully reviewed and selected from 142 submissions. The papers are organized in topical sections on computer vision and pattern recognition, distributed AI: autonomous agents, multi-agent systems and game knowledge representation and reasoning, machine learning and data mining, natural language processing, and robotics.

Deep Learning with Relational Logic Representations

Deep Learning with Relational Logic Representations
Author :
Publisher : IOS Press
Total Pages : 239
Release :
ISBN-10 : 9781643683430
ISBN-13 : 1643683438
Rating : 4/5 (30 Downloads)

Synopsis Deep Learning with Relational Logic Representations by : G. Šír

Deep learning has been used with great success in a number of diverse applications, ranging from image processing to game playing, and the fast progress of this learning paradigm has even been seen as paving the way towards general artificial intelligence. However, the current deep learning models are still principally limited in many ways. This book, ‘Deep Learning with Relational Logic Representations’, addresses the limited expressiveness of the common tensor-based learning representation used in standard deep learning, by generalizing it to relational representations based in mathematical logic. This is the natural formalism for the relational data omnipresent in the interlinked structures of the Internet and relational databases, as well as for the background knowledge often present in the form of relational rules and constraints. These are impossible to properly exploit with standard neural networks, but the book introduces a new declarative deep relational learning framework called Lifted Relational Neural Networks, which generalizes the standard deep learning models into the relational setting by means of a ‘lifting’ paradigm, known from Statistical Relational Learning. The author explains how this approach allows for effective end-to-end deep learning with relational data and knowledge, introduces several enhancements and optimizations to the framework, and demonstrates its expressiveness with various novel deep relational learning concepts, including efficient generalizations of popular contemporary models, such as Graph Neural Networks. Demonstrating the framework across various learning scenarios and benchmarks, including computational efficiency, the book will be of interest to all those interested in the theory and practice of advancing representations of modern deep learning architectures.

Inductive Logic Programming

Inductive Logic Programming
Author :
Publisher : Springer
Total Pages : 312
Release :
ISBN-10 : 3540661093
ISBN-13 : 9783540661092
Rating : 4/5 (93 Downloads)

Synopsis Inductive Logic Programming by : Saso Dzeroski

This book constitutes the refereed proceedings of the 9th International Conference on Inductive Logic Programming, ILP-99, held in Bled, Slovenia, in June 1999. The 24 revised papers presented were carefully reviewed and selected from 40 submissions. Also included are abstracts of three invited contributions. The papers address all current issues in inductive logic programming and inductive learning, from foundational and methodological issues to applications, e.g. in natural language processing, knowledge discovery, and data mining.