Deep Learning with Relational Logic Representations

Deep Learning with Relational Logic Representations
Author :
Publisher : IOS Press
Total Pages : 239
Release :
ISBN-10 : 9781643683430
ISBN-13 : 1643683438
Rating : 4/5 (30 Downloads)

Synopsis Deep Learning with Relational Logic Representations by : G. Šír

Deep learning has been used with great success in a number of diverse applications, ranging from image processing to game playing, and the fast progress of this learning paradigm has even been seen as paving the way towards general artificial intelligence. However, the current deep learning models are still principally limited in many ways. This book, ‘Deep Learning with Relational Logic Representations’, addresses the limited expressiveness of the common tensor-based learning representation used in standard deep learning, by generalizing it to relational representations based in mathematical logic. This is the natural formalism for the relational data omnipresent in the interlinked structures of the Internet and relational databases, as well as for the background knowledge often present in the form of relational rules and constraints. These are impossible to properly exploit with standard neural networks, but the book introduces a new declarative deep relational learning framework called Lifted Relational Neural Networks, which generalizes the standard deep learning models into the relational setting by means of a ‘lifting’ paradigm, known from Statistical Relational Learning. The author explains how this approach allows for effective end-to-end deep learning with relational data and knowledge, introduces several enhancements and optimizations to the framework, and demonstrates its expressiveness with various novel deep relational learning concepts, including efficient generalizations of popular contemporary models, such as Graph Neural Networks. Demonstrating the framework across various learning scenarios and benchmarks, including computational efficiency, the book will be of interest to all those interested in the theory and practice of advancing representations of modern deep learning architectures.

Logical and Relational Learning

Logical and Relational Learning
Author :
Publisher : Springer Science & Business Media
Total Pages : 395
Release :
ISBN-10 : 9783540688563
ISBN-13 : 3540688560
Rating : 4/5 (63 Downloads)

Synopsis Logical and Relational Learning by : Luc De Raedt

This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning.

Statistical Relational Artificial Intelligence

Statistical Relational Artificial Intelligence
Author :
Publisher : Morgan & Claypool Publishers
Total Pages : 191
Release :
ISBN-10 : 9781627058421
ISBN-13 : 1627058427
Rating : 4/5 (21 Downloads)

Synopsis Statistical Relational Artificial Intelligence by : Luc De Raedt

An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.

Probabilistic Inductive Logic Programming

Probabilistic Inductive Logic Programming
Author :
Publisher : Springer
Total Pages : 348
Release :
ISBN-10 : 9783540786528
ISBN-13 : 354078652X
Rating : 4/5 (28 Downloads)

Synopsis Probabilistic Inductive Logic Programming by : Luc De Raedt

This book provides an introduction to probabilistic inductive logic programming. It places emphasis on the methods based on logic programming principles and covers formalisms and systems, implementations and applications, as well as theory.

Graph Representation Learning

Graph Representation Learning
Author :
Publisher : Springer Nature
Total Pages : 141
Release :
ISBN-10 : 9783031015885
ISBN-13 : 3031015886
Rating : 4/5 (85 Downloads)

Synopsis Graph Representation Learning by : William L. William L. Hamilton

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Exploiting Environment Configurability in Reinforcement Learning

Exploiting Environment Configurability in Reinforcement Learning
Author :
Publisher : IOS Press
Total Pages : 377
Release :
ISBN-10 : 9781643683638
ISBN-13 : 1643683632
Rating : 4/5 (38 Downloads)

Synopsis Exploiting Environment Configurability in Reinforcement Learning by : A.M. Metelli

In recent decades, Reinforcement Learning (RL) has emerged as an effective approach to address complex control tasks. In a Markov Decision Process (MDP), the framework typically used, the environment is assumed to be a fixed entity that cannot be altered externally. There are, however, several real-world scenarios in which the environment can be modified to a limited extent. This book, Exploiting Environment Configurability in Reinforcement Learning, aims to formalize and study diverse aspects of environment configuration. In a traditional MDP, the agent perceives the state of the environment and performs actions. As a consequence, the environment transitions to a new state and generates a reward signal. The goal of the agent consists of learning a policy, i.e., a prescription of actions that maximize the long-term reward. Although environment configuration arises quite often in real applications, the topic is very little explored in the literature. The contributions in the book are theoretical, algorithmic, and experimental and can be broadly subdivided into three parts. The first part introduces the novel formalism of Configurable Markov Decision Processes (Conf-MDPs) to model the configuration opportunities offered by the environment. The second part of the book focuses on the cooperative Conf-MDP setting and investigates the problem of finding an agent policy and an environment configuration that jointly optimize the long-term reward. The third part addresses two specific applications of the Conf-MDP framework: policy space identification and control frequency adaptation. The book will be of interest to all those using RL as part of their work.

Inductive Logic Programming

Inductive Logic Programming
Author :
Publisher : Springer Nature
Total Pages : 167
Release :
ISBN-10 : 9783031556302
ISBN-13 : 3031556305
Rating : 4/5 (02 Downloads)

Synopsis Inductive Logic Programming by : Stephen H. Muggleton

ECAI 2020

ECAI 2020
Author :
Publisher : IOS Press
Total Pages : 3122
Release :
ISBN-10 : 9781643681016
ISBN-13 : 164368101X
Rating : 4/5 (16 Downloads)

Synopsis ECAI 2020 by : G. De Giacomo

This book presents the proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), held in Santiago de Compostela, Spain, from 29 August to 8 September 2020. The conference was postponed from June, and much of it conducted online due to the COVID-19 restrictions. The conference is one of the principal occasions for researchers and practitioners of AI to meet and discuss the latest trends and challenges in all fields of AI and to demonstrate innovative applications and uses of advanced AI technology. The book also includes the proceedings of the 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020) held at the same time. A record number of more than 1,700 submissions was received for ECAI 2020, of which 1,443 were reviewed. Of these, 361 full-papers and 36 highlight papers were accepted (an acceptance rate of 25% for full-papers and 45% for highlight papers). The book is divided into three sections: ECAI full papers; ECAI highlight papers; and PAIS papers. The topics of these papers cover all aspects of AI, including Agent-based and Multi-agent Systems; Computational Intelligence; Constraints and Satisfiability; Games and Virtual Environments; Heuristic Search; Human Aspects in AI; Information Retrieval and Filtering; Knowledge Representation and Reasoning; Machine Learning; Multidisciplinary Topics and Applications; Natural Language Processing; Planning and Scheduling; Robotics; Safe, Explainable, and Trustworthy AI; Semantic Technologies; Uncertainty in AI; and Vision. The book will be of interest to all those whose work involves the use of AI technology.

Introduction to Deep Learning

Introduction to Deep Learning
Author :
Publisher : Springer
Total Pages : 196
Release :
ISBN-10 : 9783319730042
ISBN-13 : 3319730045
Rating : 4/5 (42 Downloads)

Synopsis Introduction to Deep Learning by : Sandro Skansi

This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website. Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism. This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.

Proceedings of CECNet 2022

Proceedings of CECNet 2022
Author :
Publisher : IOS Press
Total Pages : 696
Release :
ISBN-10 : 9781643683690
ISBN-13 : 1643683691
Rating : 4/5 (90 Downloads)

Synopsis Proceedings of CECNet 2022 by : A.J. Tallón-Ballesteros

Electronics, communication and networks coexist, and it is not possible to conceive of our current society without them. Within the next decade we will probably see the consolidation of 6G-based technology, accompanied by many compatible devices, and fiber-optic is already an advanced technology with many applications. This book presents the proceedings of CECNet 2022, the 12th International Conference on Electronics, Communications and Networks, held as a virtual event with no face-to-face participation in Xiamen, China, from 4 to 7 November 2022. CECNet is held annually, and covers many interrelated groups of topics such as electronics technology, communication engineering and technology, wireless communications engineering and technology and computer engineering and technology. This year the conference committee received 313 submissions. All papers were carefully reviewed by program committee members, taking into consideration the breadth and depth of research topics falling within the scope of the conference, and after further discussion, 79 papers were selected for presentation at the conference and for publication in this book. This represents an acceptance rate of about 25%. The book offers an overview of the latest research and developments in these rapidly evolving fields, and will be of interest to all those working with electronics, communication and networks.