Introduction to Perturbation Methods

Introduction to Perturbation Methods
Author :
Publisher : Springer Science & Business Media
Total Pages : 344
Release :
ISBN-10 : 9781461253471
ISBN-13 : 1461253470
Rating : 4/5 (71 Downloads)

Synopsis Introduction to Perturbation Methods by : Mark H. Holmes

This introductory graduate text is based on a graduate course the author has taught repeatedly over the last ten years to students in applied mathematics, engineering sciences, and physics. Each chapter begins with an introductory development involving ordinary differential equations, and goes on to cover such traditional topics as boundary layers and multiple scales. However, it also contains material arising from current research interest, including homogenisation, slender body theory, symbolic computing, and discrete equations. Many of the excellent exercises are derived from problems of up-to-date research and are drawn from a wide range of application areas.

Introduction to Perturbation Techniques

Introduction to Perturbation Techniques
Author :
Publisher : John Wiley & Sons
Total Pages : 533
Release :
ISBN-10 : 9783527618453
ISBN-13 : 3527618457
Rating : 4/5 (53 Downloads)

Synopsis Introduction to Perturbation Techniques by : Ali H. Nayfeh

Similarities, differences, advantages and limitations of perturbation techniques are pointed out concisely. The techniques are described by means of examples that consist mainly of algebraic and ordinary differential equations. Each chapter contains a number of exercises.

Perturbation Methods in Applied Mathematics

Perturbation Methods in Applied Mathematics
Author :
Publisher : Springer Science & Business Media
Total Pages : 569
Release :
ISBN-10 : 9781475742138
ISBN-13 : 1475742134
Rating : 4/5 (38 Downloads)

Synopsis Perturbation Methods in Applied Mathematics by : J. Kevorkian

This book is a revised and updated version, including a substantial portion of new material, of J. D. Cole's text Perturbation Methods in Applied Mathe matics, Ginn-Blaisdell, 1968. We present the material at a level which assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate level course on the subject. The applied mathematician, attempting to understand or solve a physical problem, very often uses a perturbation procedure. In doing this, he usually draws on a backlog of experience gained from the solution of similar examples rather than on some general theory of perturbations. The aim of this book is to survey these perturbation methods, especially in connection with differ ential equations, in order to illustrate certain general features common to many examples. The basic ideas, however, are also applicable to integral equations, integrodifferential equations, and even to_difference equations. In essence, a perturbation procedure consists of constructing the solution for a problem involving a small parameter B, either in the differential equation or the boundary conditions or both, when the solution for the limiting case B = 0 is known. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of B.

Perturbations

Perturbations
Author :
Publisher : SIAM
Total Pages : 358
Release :
ISBN-10 : 1611971098
ISBN-13 : 9781611971095
Rating : 4/5 (98 Downloads)

Synopsis Perturbations by : James A. Murdock

Perturbations: Theory and Methods gives a thorough introduction to both regular and singular perturbation methods for algebraic and differential equations. Unlike most introductory books on the subject, this one distinguishes between formal and rigorous asymptotic validity, which are commonly confused in books that treat perturbation theory as a bag of heuristic tricks with no foundation. The meaning of "uniformity" is carefully explained in a variety of contexts. All standard methods, such as rescaling, multiple scales, averaging, matching, and the WKB method are covered, and the asymptotic validity (in the rigorous sense) of each method is carefully proved. First published in 1991, this book is still useful today because it is an introduction. It combines perturbation results with those known through other methods. Sometimes a geometrical result (such as the existence of a periodic solution) is rigorously deduced from a perturbation result, and at other times a knowledge of the geometry of the solutions is used to aid in the selection of an effective perturbation method. Dr. Murdock's approach differs from other introductory texts because he attempts to present perturbation theory as a natural part of a larger whole, the mathematical theory of differential equations. He explores the meaning of the results and their connections to other ways of studying the same problems.

Perturbation Methods

Perturbation Methods
Author :
Publisher : Cambridge University Press
Total Pages : 178
Release :
ISBN-10 : 0521378974
ISBN-13 : 9780521378970
Rating : 4/5 (74 Downloads)

Synopsis Perturbation Methods by : E. J. Hinch

A textbook presenting the theory and underlying techniques of perturbation methods in a manner suitable for senior undergraduates from a broad range of disciplines.

Perturbation Methods

Perturbation Methods
Author :
Publisher : John Wiley & Sons
Total Pages : 437
Release :
ISBN-10 : 9783527617616
ISBN-13 : 3527617612
Rating : 4/5 (16 Downloads)

Synopsis Perturbation Methods by : Ali H. Nayfeh

The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research

Singular Perturbation Methods for Ordinary Differential Equations

Singular Perturbation Methods for Ordinary Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 234
Release :
ISBN-10 : 9781461209775
ISBN-13 : 1461209773
Rating : 4/5 (75 Downloads)

Synopsis Singular Perturbation Methods for Ordinary Differential Equations by : Robert E., Jr. O'Malley

This book results from various lectures given in recent years. Early drafts were used for several single semester courses on singular perturbation meth ods given at Rensselaer, and a more complete version was used for a one year course at the Technische Universitat Wien. Some portions have been used for short lecture series at Universidad Central de Venezuela, West Vir ginia University, the University of Southern California, the University of California at Davis, East China Normal University, the University of Texas at Arlington, Universita di Padova, and the University of New Hampshire, among other places. As a result, I've obtained lots of valuable feedback from students and listeners, for which I am grateful. This writing continues a pattern. Earlier lectures at Bell Laboratories, at the University of Edin burgh and New York University, and at the Australian National University led to my earlier works (1968, 1974, and 1978). All seem to have been useful for the study of singular perturbations, and I hope the same will be true of this monograph. I've personally learned much from reading and analyzing the works of others, so I would especially encourage readers to treat this book as an introduction to a diverse and exciting literature. The topic coverage selected is personal and reflects my current opin ions. An attempt has been made to encourage a consistent method of ap proaching problems, largely through correcting outer limits in regions of rapid change. Formal proofs of correctness are not emphasized.

A First Look at Perturbation Theory

A First Look at Perturbation Theory
Author :
Publisher : Courier Corporation
Total Pages : 162
Release :
ISBN-10 : 9780486315584
ISBN-13 : 0486315584
Rating : 4/5 (84 Downloads)

Synopsis A First Look at Perturbation Theory by : James G. Simmonds

Undergraduates in engineering and the physical sciences receive a thorough introduction to perturbation theory in this useful and accessible text. Students discover methods for obtaining an approximate solution of a mathematical problem by exploiting the presence of a small, dimensionless parameter — the smaller the parameter, the more accurate the approximate solution. Knowledge of perturbation theory offers a twofold benefit: approximate solutions often reveal the exact solution's essential dependence on specified parameters; also, some problems resistant to numerical solutions may yield to perturbation methods. In fact, numerical and perturbation methods can be combined in a complementary way. The text opens with a well-defined treatment of finding the roots of polynomials whose coefficients contain a small parameter. Proceeding to differential equations, the authors explain many techniques for handling perturbations that reorder the equations or involve an unbounded independent variable. Two disparate practical problems that can be solved efficiently with perturbation methods conclude the volume. Written in an informal style that moves from specific examples to general principles, this elementary text emphasizes the "why" along with the "how"; prerequisites include a knowledge of one-variable calculus and ordinary differential equations. This newly revised second edition features an additional appendix concerning the approximate evaluation of integrals.

Perturbation Techniques in Mathematics, Engineering and Physics

Perturbation Techniques in Mathematics, Engineering and Physics
Author :
Publisher : Courier Corporation
Total Pages : 146
Release :
ISBN-10 : 0486432580
ISBN-13 : 9780486432588
Rating : 4/5 (80 Downloads)

Synopsis Perturbation Techniques in Mathematics, Engineering and Physics by : Richard Ernest Bellman

Graduate students receive a stimulating introduction to analytical approximation techniques for solving differential equations in this text, which introduces scientifically significant problems and indicates useful solutions. 1966 edition.

Random Perturbation Methods with Applications in Science and Engineering

Random Perturbation Methods with Applications in Science and Engineering
Author :
Publisher : Springer Science & Business Media
Total Pages : 500
Release :
ISBN-10 : 9780387224466
ISBN-13 : 0387224467
Rating : 4/5 (66 Downloads)

Synopsis Random Perturbation Methods with Applications in Science and Engineering by : Anatoli V. Skorokhod

This book develops methods for describing random dynamical systems, and it illustrats how the methods can be used in a variety of applications. Appeals to researchers and graduate students who require tools to investigate stochastic systems.