Singular Perturbation Methods for Ordinary Differential Equations

Singular Perturbation Methods for Ordinary Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 234
Release :
ISBN-10 : 9781461209775
ISBN-13 : 1461209773
Rating : 4/5 (75 Downloads)

Synopsis Singular Perturbation Methods for Ordinary Differential Equations by : Robert E., Jr. O'Malley

This book results from various lectures given in recent years. Early drafts were used for several single semester courses on singular perturbation meth ods given at Rensselaer, and a more complete version was used for a one year course at the Technische Universitat Wien. Some portions have been used for short lecture series at Universidad Central de Venezuela, West Vir ginia University, the University of Southern California, the University of California at Davis, East China Normal University, the University of Texas at Arlington, Universita di Padova, and the University of New Hampshire, among other places. As a result, I've obtained lots of valuable feedback from students and listeners, for which I am grateful. This writing continues a pattern. Earlier lectures at Bell Laboratories, at the University of Edin burgh and New York University, and at the Australian National University led to my earlier works (1968, 1974, and 1978). All seem to have been useful for the study of singular perturbations, and I hope the same will be true of this monograph. I've personally learned much from reading and analyzing the works of others, so I would especially encourage readers to treat this book as an introduction to a diverse and exciting literature. The topic coverage selected is personal and reflects my current opin ions. An attempt has been made to encourage a consistent method of ap proaching problems, largely through correcting outer limits in regions of rapid change. Formal proofs of correctness are not emphasized.

Methods and Applications of Singular Perturbations

Methods and Applications of Singular Perturbations
Author :
Publisher : Springer Science & Business Media
Total Pages : 332
Release :
ISBN-10 : 9780387283135
ISBN-13 : 0387283137
Rating : 4/5 (35 Downloads)

Synopsis Methods and Applications of Singular Perturbations by : Ferdinand Verhulst

Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach

Robust Numerical Methods for Singularly Perturbed Differential Equations

Robust Numerical Methods for Singularly Perturbed Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 599
Release :
ISBN-10 : 9783540344674
ISBN-13 : 3540344675
Rating : 4/5 (74 Downloads)

Synopsis Robust Numerical Methods for Singularly Perturbed Differential Equations by : Hans-Görg Roos

This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.

Multiple Scale and Singular Perturbation Methods

Multiple Scale and Singular Perturbation Methods
Author :
Publisher : Springer
Total Pages : 634
Release :
ISBN-10 : 9780387942025
ISBN-13 : 0387942025
Rating : 4/5 (25 Downloads)

Synopsis Multiple Scale and Singular Perturbation Methods by : J.K. Kevorkian

This book is a revised and updated version, including a substantial portion of new material, of our text Perturbation Methods in Applied Mathematics (Springer Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate-level course on the subject. Perturbation methods, first used by astronomers to predict the effects of small disturbances on the nominal motions of celestial bodies, have now become widely used analytical tools in virtually all branches of science. A problem lends itself to perturbation analysis if it is "close" to a simpler problem that can be solved exactly. Typically, this closeness is measured by the occurrence of a small dimensionless parameter, E, in the governing system (consisting of differential equations and boundary conditions) so that for E = 0 the resulting system is exactly solvable. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of E. In a regular perturbation problem, a straightforward procedure leads to a system of differential equations and boundary conditions for each term in the asymptotic expansion. This system can be solved recursively, and the accuracy of the result improves as E gets smaller, for all values of the independent variables throughout the domain of interest. We discuss regular perturbation problems in the first chapter.

Numerical Methods for Singularly Perturbed Differential Equations

Numerical Methods for Singularly Perturbed Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 364
Release :
ISBN-10 : 9783662032060
ISBN-13 : 3662032066
Rating : 4/5 (60 Downloads)

Synopsis Numerical Methods for Singularly Perturbed Differential Equations by : Hans-Görg Roos

The analysis of singular perturbed differential equations began early in this century, when approximate solutions were constructed from asymptotic ex pansions. (Preliminary attempts appear in the nineteenth century [vD94].) This technique has flourished since the mid-1960s. Its principal ideas and methods are described in several textbooks. Nevertheless, asymptotic ex pansions may be impossible to construct or may fail to simplify the given problem; then numerical approximations are often the only option. The systematic study of numerical methods for singular perturbation problems started somewhat later - in the 1970s. While the research frontier has been steadily pushed back, the exposition of new developments in the analysis of numerical methods has been neglected. Perhaps the only example of a textbook that concentrates on this analysis is [DMS80], which collects various results for ordinary differential equations, but many methods and techniques that are relevant today (especially for partial differential equa tions) were developed after 1980.Thus contemporary researchers must comb the literature to acquaint themselves with earlier work. Our purposes in writing this introductory book are twofold. First, we aim to present a structured account of recent ideas in the numerical analysis of singularly perturbed differential equations. Second, this important area has many open problems and we hope that our book will stimulate further investigations.Our choice of topics is inevitably personal and reflects our own main interests.

Perturbation Methods for Differential Equations

Perturbation Methods for Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 363
Release :
ISBN-10 : 9781461200475
ISBN-13 : 1461200474
Rating : 4/5 (75 Downloads)

Synopsis Perturbation Methods for Differential Equations by : Bhimsen Shivamoggi

Perturbation methods are widely used in the study of physically significant differential equations, which arise in Applied Mathematics, Physics and Engineering.; Background material is provided in each chapter along with illustrative examples, problems, and solutions.; A comprehensive bibliography and index complete the work.; Covers an important field of solutions for engineering and the physical sciences.; To allow an interdisciplinary readership, the book focuses almost exclusively on the procedures and the underlying ideas and soft pedal the proofs; Dr. Bhimsen K. Shivamoggi has authored seven successful books for various publishers like John Wiley & Sons and Kluwer Academic Publishers.

The Theory of Singular Perturbations

The Theory of Singular Perturbations
Author :
Publisher : Elsevier
Total Pages : 353
Release :
ISBN-10 : 9780080542751
ISBN-13 : 0080542751
Rating : 4/5 (51 Downloads)

Synopsis The Theory of Singular Perturbations by : E.M. de Jager

The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed.The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathematical justification of these methods. The latter implies a priori estimates of solutions of differential equations; this involves the application of Gronwall's lemma, maximum principles, energy integrals, fixed point theorems and Gåding's theorem for general elliptic equations. These features make the book of value to mathematicians and researchers in the engineering sciences, interested in the mathematical justification of formal approximations of solutions of practical perturbation problems. The text is selfcontained and each chapter is concluded with some exercises.

Singular-Perturbation Theory

Singular-Perturbation Theory
Author :
Publisher : Cambridge University Press
Total Pages : 520
Release :
ISBN-10 : 052110307X
ISBN-13 : 9780521103077
Rating : 4/5 (7X Downloads)

Synopsis Singular-Perturbation Theory by : Donald R. Smith

This book presents an introduction to singular-perturbation problems, problems which depend on a parameter in such a way that solutions behave non-uniformly as the parameter tends toward some limiting value of interest. The author considers and solves a variety of problems, mostly for ordinary differential equations. He constructs (approximate) solutions for oscillation problems, using the methods of averaging and of multiple scales. For problems of the nonoscillatory type, where solutions exhibit 'fast dynamics' in a thin initial layer, he derives solutions using the O'Malley/Hoppensteadt method and the method of matched expansions. He obtains solutions for boundary-value problems, where solutions exhibit rapid variation in thin layers, using a multivariable method. After a suitable approximate solution is constructed, the author linearizes the problem about the proposed approximate solution, and, emphasizing the use of the Banach/Picard fixed-point theorem, presents a study of the linearization. This book will be useful to students at the graduate and senior undergraduate levels studying perturbation theory for differential equations, and to pure and applied mathematicians, engineers, and scientists who use differential equations in the modelling of natural phenomena.

Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition)

Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition)
Author :
Publisher : World Scientific
Total Pages : 191
Release :
ISBN-10 : 9789814452779
ISBN-13 : 9814452777
Rating : 4/5 (79 Downloads)

Synopsis Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition) by : John J H Miller

Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods.

The Boundary Function Method for Singular Perturbed Problems

The Boundary Function Method for Singular Perturbed Problems
Author :
Publisher : SIAM
Total Pages : 231
Release :
ISBN-10 : 9780898713336
ISBN-13 : 0898713331
Rating : 4/5 (36 Downloads)

Synopsis The Boundary Function Method for Singular Perturbed Problems by : Adelaida B. Vasil'eva

This book is devoted solely to the boundary function method, which is one of the asymptotic methods.