Homotopy Theory Of C Algebras
Download Homotopy Theory Of C Algebras full books in PDF, epub, and Kindle. Read online free Homotopy Theory Of C Algebras ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Yves Felix |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 589 |
Release |
: 2001 |
ISBN-10 |
: 9780387950686 |
ISBN-13 |
: 0387950680 |
Rating |
: 4/5 (86 Downloads) |
Synopsis Rational Homotopy Theory by : Yves Felix
This is a long awaited book on rational homotopy theory which contains all the main theorems with complete proofs, and more elementary proofs for many results that were proved ten or fifteen years ago. The authors added a frist section on classical algebraic topology to make the book accessible to students with only little background in algebraic topology.
Author |
: Paul Arne Østvær |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 142 |
Release |
: 2010-09-08 |
ISBN-10 |
: 9783034605656 |
ISBN-13 |
: 303460565X |
Rating |
: 4/5 (56 Downloads) |
Synopsis Homotopy Theory of C*-Algebras by : Paul Arne Østvær
Homotopy theory and C* algebras are central topics in contemporary mathematics. This book introduces a modern homotopy theory for C*-algebras. One basic idea of the setup is to merge C*-algebras and spaces studied in algebraic topology into one category comprising C*-spaces. These objects are suitable fodder for standard homotopy theoretic moves, leading to unstable and stable model structures. With the foundations in place one is led to natural definitions of invariants for C*-spaces such as homology and cohomology theories, K-theory and zeta-functions. The text is largely self-contained. It serves a wide audience of graduate students and researchers interested in C*-algebras, homotopy theory and applications.
Author |
: |
Publisher |
: Univalent Foundations |
Total Pages |
: 484 |
Release |
: |
ISBN-10 |
: |
ISBN-13 |
: |
Rating |
: 4/5 ( Downloads) |
Synopsis Homotopy Type Theory: Univalent Foundations of Mathematics by :
Author |
: Anthony D. Elmendorf |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 265 |
Release |
: 1997 |
ISBN-10 |
: 9780821843031 |
ISBN-13 |
: 0821843036 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Rings, Modules, and Algebras in Stable Homotopy Theory by : Anthony D. Elmendorf
This book introduces a new point-set level approach to stable homotopy theory that has already had many applications and promises to have a lasting impact on the subject. Given the sphere spectrum $S$, the authors construct an associative, commutative, and unital smash product in a complete and cocomplete category of ``$S$-modules'' whose derived category is equivalent to the classical stable homotopy category. This construction allows for a simple and algebraically manageable definition of ``$S$-algebras'' and ``commutative $S$-algebras'' in terms of associative, or associative and commutative, products $R\wedge SR \longrightarrow R$. These notions are essentially equivalent to the earlier notions of $A {\infty $ and $E {\infty $ ring spectra, and the older notions feed naturally into the new framework to provide plentiful examples. There is an equally simple definition of $R$-modules in terms of maps $R\wedge SM\longrightarrow M$. When $R$ is commutative, the category of $R$-modules also has a
Author |
: Douglas C. Ravenel |
Publisher |
: Princeton University Press |
Total Pages |
: 228 |
Release |
: 1992-11-08 |
ISBN-10 |
: 069102572X |
ISBN-13 |
: 9780691025728 |
Rating |
: 4/5 (2X Downloads) |
Synopsis Nilpotence and Periodicity in Stable Homotopy Theory by : Douglas C. Ravenel
Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.
Author |
: M. Rørdam |
Publisher |
: Cambridge University Press |
Total Pages |
: 260 |
Release |
: 2000-07-20 |
ISBN-10 |
: 0521789443 |
ISBN-13 |
: 9780521789448 |
Rating |
: 4/5 (43 Downloads) |
Synopsis An Introduction to K-Theory for C*-Algebras by : M. Rørdam
This book provides a very elementary introduction to K-theory for C*-algebras, and is ideal for beginning graduate students.
Author |
: Brian A. Munson |
Publisher |
: Cambridge University Press |
Total Pages |
: 649 |
Release |
: 2015-10-06 |
ISBN-10 |
: 9781107030251 |
ISBN-13 |
: 1107030250 |
Rating |
: 4/5 (51 Downloads) |
Synopsis Cubical Homotopy Theory by : Brian A. Munson
A modern, example-driven introduction to cubical diagrams and related topics such as homotopy limits and cosimplicial spaces.
Author |
: Gerald J. Murphy |
Publisher |
: Academic Press |
Total Pages |
: 297 |
Release |
: 2014-06-28 |
ISBN-10 |
: 9780080924960 |
ISBN-13 |
: 0080924964 |
Rating |
: 4/5 (60 Downloads) |
Synopsis C*-Algebras and Operator Theory by : Gerald J. Murphy
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
Author |
: Douglas C. Ravenel |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 418 |
Release |
: 2003-11-25 |
ISBN-10 |
: 9780821829677 |
ISBN-13 |
: 082182967X |
Rating |
: 4/5 (77 Downloads) |
Synopsis Complex Cobordism and Stable Homotopy Groups of Spheres by : Douglas C. Ravenel
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.
Author |
: Emily Riehl |
Publisher |
: Cambridge University Press |
Total Pages |
: 371 |
Release |
: 2014-05-26 |
ISBN-10 |
: 9781139952637 |
ISBN-13 |
: 1139952633 |
Rating |
: 4/5 (37 Downloads) |
Synopsis Categorical Homotopy Theory by : Emily Riehl
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.