Geometric Algebra
Download Geometric Algebra full books in PDF, epub, and Kindle. Read online free Geometric Algebra ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Leo Dorst |
Publisher |
: Elsevier |
Total Pages |
: 664 |
Release |
: 2010-07-26 |
ISBN-10 |
: 9780080553108 |
ISBN-13 |
: 0080553109 |
Rating |
: 4/5 (08 Downloads) |
Synopsis Geometric Algebra for Computer Science by : Leo Dorst
Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA
Author |
: David Hestenes |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 340 |
Release |
: 1984 |
ISBN-10 |
: 9027725616 |
ISBN-13 |
: 9789027725615 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Clifford Algebra to Geometric Calculus by : David Hestenes
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
Author |
: Emil Artin |
Publisher |
: Courier Dover Publications |
Total Pages |
: 228 |
Release |
: 2016-01-20 |
ISBN-10 |
: 9780486809205 |
ISBN-13 |
: 048680920X |
Rating |
: 4/5 (05 Downloads) |
Synopsis Geometric Algebra by : Emil Artin
This concise classic presents advanced undergraduates and graduate students in mathematics with an overview of geometric algebra. The text originated with lecture notes from a New York University course taught by Emil Artin, one of the preeminent mathematicians of the twentieth century. The Bulletin of the American Mathematical Society praised Geometric Algebra upon its initial publication, noting that "mathematicians will find on many pages ample evidence of the author's ability to penetrate a subject and to present material in a particularly elegant manner." Chapter 1 serves as reference, consisting of the proofs of certain isolated algebraic theorems. Subsequent chapters explore affine and projective geometry, symplectic and orthogonal geometry, the general linear group, and the structure of symplectic and orthogonal groups. The author offers suggestions for the use of this book, which concludes with a bibliography and index.
Author |
: Jayme Vaz Jr. |
Publisher |
: Oxford University Press |
Total Pages |
: 257 |
Release |
: 2016 |
ISBN-10 |
: 9780198782926 |
ISBN-13 |
: 0198782926 |
Rating |
: 4/5 (26 Downloads) |
Synopsis An Introduction to Clifford Algebras and Spinors by : Jayme Vaz Jr.
This work is unique compared to the existing literature. It is very didactical and accessible to both students and researchers, without neglecting the formal character and the deep algebraic completeness of the topic along with its physical applications.
Author |
: Dietmar Hildenbrand |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 217 |
Release |
: 2012-12-31 |
ISBN-10 |
: 9783642317941 |
ISBN-13 |
: 3642317944 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Foundations of Geometric Algebra Computing by : Dietmar Hildenbrand
The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.
Author |
: John Snygg |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 472 |
Release |
: 2011-12-09 |
ISBN-10 |
: 9780817682835 |
ISBN-13 |
: 081768283X |
Rating |
: 4/5 (35 Downloads) |
Synopsis A New Approach to Differential Geometry using Clifford's Geometric Algebra by : John Snygg
Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.
Author |
: John W. Arthur |
Publisher |
: John Wiley & Sons |
Total Pages |
: 320 |
Release |
: 2011-09-13 |
ISBN-10 |
: 9780470941638 |
ISBN-13 |
: 0470941634 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Understanding Geometric Algebra for Electromagnetic Theory by : John W. Arthur
This book aims to disseminate geometric algebra as a straightforward mathematical tool set for working with and understanding classical electromagnetic theory. It's target readership is anyone who has some knowledge of electromagnetic theory, predominantly ordinary scientists and engineers who use it in the course of their work, or postgraduate students and senior undergraduates who are seeking to broaden their knowledge and increase their understanding of the subject. It is assumed that the reader is not a mathematical specialist and is neither familiar with geometric algebra or its application to electromagnetic theory. The modern approach, geometric algebra, is the mathematical tool set we should all have started out with and once the reader has a grasp of the subject, he or she cannot fail to realize that traditional vector analysis is really awkward and even misleading by comparison. Professors can request a solutions manual by email: [email protected]
Author |
: John Vince |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 268 |
Release |
: 2008-04-21 |
ISBN-10 |
: 9781846289965 |
ISBN-13 |
: 1846289963 |
Rating |
: 4/5 (65 Downloads) |
Synopsis Geometric Algebra for Computer Graphics by : John Vince
Geometric algebra (a Clifford Algebra) has been applied to different branches of physics for a long time but is now being adopted by the computer graphics community and is providing exciting new ways of solving 3D geometric problems. The author tackles this complex subject with inimitable style, and provides an accessible and very readable introduction. The book is filled with lots of clear examples and is very well illustrated. Introductory chapters look at algebraic axioms, vector algebra and geometric conventions and the book closes with a chapter on how the algebra is applied to computer graphics.
Author |
: Leo Dorst |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 458 |
Release |
: 2011-08-28 |
ISBN-10 |
: 9780857298119 |
ISBN-13 |
: 0857298119 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Guide to Geometric Algebra in Practice by : Leo Dorst
This highly practical Guide to Geometric Algebra in Practice reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. Topics and features: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the description of rigid body motion, interpolation and tracking, and image processing; reviews the employment of GA in theorem proving and combinatorics; discusses the geometric algebra of lines, lower-dimensional algebras, and other alternatives to 5-dimensional CGA; proposes applications of coordinate-free methods of GA for differential geometry.
Author |
: Christian Perwass |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 389 |
Release |
: 2009-02-11 |
ISBN-10 |
: 9783540890683 |
ISBN-13 |
: 3540890688 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Geometric Algebra with Applications in Engineering by : Christian Perwass
The application of geometric algebra to the engineering sciences is a young, active subject of research. The promise of this field is that the mathematical structure of geometric algebra together with its descriptive power will result in intuitive and more robust algorithms. This book examines all aspects essential for a successful application of geometric algebra: the theoretical foundations, the representation of geometric constraints, and the numerical estimation from uncertain data. Formally, the book consists of two parts: theoretical foundations and applications. The first part includes chapters on random variables in geometric algebra, linear estimation methods that incorporate the uncertainty of algebraic elements, and the representation of geometry in Euclidean, projective, conformal and conic space. The second part is dedicated to applications of geometric algebra, which include uncertain geometry and transformations, a generalized camera model, and pose estimation. Graduate students, scientists, researchers and practitioners will benefit from this book. The examples given in the text are mostly recent research results, so practitioners can see how to apply geometric algebra to real tasks, while researchers note starting points for future investigations. Students will profit from the detailed introduction to geometric algebra, while the text is supported by the author's visualization software, CLUCalc, freely available online, and a website that includes downloadable exercises, slides and tutorials.