Foundations Of Geometric Algebra Computing
Download Foundations Of Geometric Algebra Computing full books in PDF, epub, and Kindle. Read online free Foundations Of Geometric Algebra Computing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Dietmar Hildenbrand |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 217 |
Release |
: 2012-12-31 |
ISBN-10 |
: 9783642317941 |
ISBN-13 |
: 3642317944 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Foundations of Geometric Algebra Computing by : Dietmar Hildenbrand
The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.
Author |
: Gerald Sommer |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 559 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9783662046210 |
ISBN-13 |
: 3662046210 |
Rating |
: 4/5 (10 Downloads) |
Synopsis Geometric Computing with Clifford Algebras by : Gerald Sommer
This monograph-like anthology introduces the concepts and framework of Clifford algebra. It provides a rich source of examples of how to work with this formalism. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work shows that Clifford algebra provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics.
Author |
: Dietmar Hildenbrand |
Publisher |
: CRC Press |
Total Pages |
: 212 |
Release |
: 2020-12-29 |
ISBN-10 |
: 9781498748414 |
ISBN-13 |
: 1498748414 |
Rating |
: 4/5 (14 Downloads) |
Synopsis Introduction to Geometric Algebra Computing by : Dietmar Hildenbrand
From the Foreword: "Dietmar Hildenbrand's new book, Introduction to Geometric Algebra Computing, in my view, fills an important gap in Clifford's geometric algebra literature...I can only congratulate the author for the daring simplicity of his novel educational approach taken in this book, consequently combined with hands on computer based exploration. Without noticing, the active reader will thus educate himself in elementary geometric algebra algorithm development, geometrically intuitive, highly comprehensible, and fully optimized." --Eckhard Hitzer, International Christian University, Tokyo, Japan Geometric Algebra is a very powerful mathematical system for an easy and intuitive treatment of geometry, but the community working with it is still very small. The main goal of this book is to close this gap with an introduction to Geometric Algebra from an engineering/computing perspective. This book is intended to give a rapid introduction to computing with Geometric Algebra and its power for geometric modeling. From the geometric objects point of view, it focuses on the most basic ones, namely points, lines and circles. This algebra is called Compass Ruler Algebra, since it is comparable to working with a compass and ruler. The book explores how to compute with these geometric objects, and their geometric operations and transformations, in a very intuitive way. The book follows a top-down approach, and while it focuses on 2D, it is also easily expandable to 3D computations. Algebra in engineering applications such as computer graphics, computer vision and robotics are also covered.
Author |
: Christian Perwass |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 389 |
Release |
: 2009-02-11 |
ISBN-10 |
: 9783540890683 |
ISBN-13 |
: 3540890688 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Geometric Algebra with Applications in Engineering by : Christian Perwass
The application of geometric algebra to the engineering sciences is a young, active subject of research. The promise of this field is that the mathematical structure of geometric algebra together with its descriptive power will result in intuitive and more robust algorithms. This book examines all aspects essential for a successful application of geometric algebra: the theoretical foundations, the representation of geometric constraints, and the numerical estimation from uncertain data. Formally, the book consists of two parts: theoretical foundations and applications. The first part includes chapters on random variables in geometric algebra, linear estimation methods that incorporate the uncertainty of algebraic elements, and the representation of geometry in Euclidean, projective, conformal and conic space. The second part is dedicated to applications of geometric algebra, which include uncertain geometry and transformations, a generalized camera model, and pose estimation. Graduate students, scientists, researchers and practitioners will benefit from this book. The examples given in the text are mostly recent research results, so practitioners can see how to apply geometric algebra to real tasks, while researchers note starting points for future investigations. Students will profit from the detailed introduction to geometric algebra, while the text is supported by the author's visualization software, CLUCalc, freely available online, and a website that includes downloadable exercises, slides and tutorials.
Author |
: Leo Dorst |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 479 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461200895 |
ISBN-13 |
: 146120089X |
Rating |
: 4/5 (95 Downloads) |
Synopsis Applications of Geometric Algebra in Computer Science and Engineering by : Leo Dorst
Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, and mathematics. The articles in this volume, written by experts in various fields, reflect an interdisciplinary approach to the subject, and highlight a range of techniques and applications. Relevant ideas are introduced in a self-contained manner and only a knowledge of linear algebra and calculus is assumed. Features and Topics: * The mathematical foundations of geometric algebra are explored * Applications in computational geometry include models of reflection and ray-tracing and a new and concise characterization of the crystallographic groups * Applications in engineering include robotics, image geometry, control-pose estimation, inverse kinematics and dynamics, control and visual navigation * Applications in physics include rigid-body dynamics, elasticity, and electromagnetism * Chapters dedicated to quantum information theory dealing with multi- particle entanglement, MRI, and relativistic generalizations Practitioners, professionals, and researchers working in computer science, engineering, physics, and mathematics will find a wide range of useful applications in this state-of-the-art survey and reference book. Additionally, advanced graduate students interested in geometric algebra will find the most current applications and methods discussed.
Author |
: Eduardo Bayro Corrochano |
Publisher |
: Springer |
Total Pages |
: 526 |
Release |
: 2014-09-25 |
ISBN-10 |
: 1447157680 |
ISBN-13 |
: 9781447157687 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Geometric Algebra Computing by : Eduardo Bayro Corrochano
This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Its accessible style is enhanced by examples, figures and experimental analysis.
Author |
: Wolfram Decker |
Publisher |
: Cambridge University Press |
Total Pages |
: 127 |
Release |
: 2013-02-07 |
ISBN-10 |
: 9781107612532 |
ISBN-13 |
: 1107612535 |
Rating |
: 4/5 (32 Downloads) |
Synopsis A First Course in Computational Algebraic Geometry by : Wolfram Decker
A quick guide to computing in algebraic geometry with many explicit computational examples introducing the computer algebra system Singular.
Author |
: Leo Dorst |
Publisher |
: Elsevier |
Total Pages |
: 664 |
Release |
: 2010-07-26 |
ISBN-10 |
: 9780080553108 |
ISBN-13 |
: 0080553109 |
Rating |
: 4/5 (08 Downloads) |
Synopsis Geometric Algebra for Computer Science by : Leo Dorst
Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA
Author |
: J. Andreas Bærentzen |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 330 |
Release |
: 2012-05-31 |
ISBN-10 |
: 9781447140757 |
ISBN-13 |
: 1447140753 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Guide to Computational Geometry Processing by : J. Andreas Bærentzen
This book reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. Features: presents an overview of the underlying mathematical theory, covering vector spaces, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations; reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces; examines techniques for computing curvature from polygonal meshes; describes algorithms for mesh smoothing, mesh parametrization, and mesh optimization and simplification; discusses point location databases and convex hulls of point sets; investigates the reconstruction of triangle meshes from point clouds, including methods for registration of point clouds and surface reconstruction; provides additional material at a supplementary website; includes self-study exercises throughout the text.
Author |
: John A. Vince |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 203 |
Release |
: 2009-05-20 |
ISBN-10 |
: 9781848823792 |
ISBN-13 |
: 1848823797 |
Rating |
: 4/5 (92 Downloads) |
Synopsis Geometric Algebra: An Algebraic System for Computer Games and Animation by : John A. Vince
Geometric algebra is still treated as an obscure branch of algebra and most books have been written by competent mathematicians in a very abstract style. This restricts the readership of such books especially by programmers working in computer graphics, who simply want guidance on algorithm design. Geometric algebra provides a unified algebraic system for solving a wide variety of geometric problems. John Vince reveals the beauty of this algebraic framework and communicates to the reader new and unusual mathematical concepts using colour illustrations, tabulations, and easy-to-follow algebraic proofs. The book includes many worked examples to show how the algebra works in practice and is essential reading for anyone involved in designing 3D geometric algorithms.