External Cavity Mode-locked Semiconductor Lasers for the Generation of Ultra-low Noise Multi-gigahertz Frequency Combs and Applications in Multi-heterodyne Detection of Arbitrary Optical Waveforms

External Cavity Mode-locked Semiconductor Lasers for the Generation of Ultra-low Noise Multi-gigahertz Frequency Combs and Applications in Multi-heterodyne Detection of Arbitrary Optical Waveforms
Author :
Publisher :
Total Pages : 88
Release :
ISBN-10 : OCLC:892061603
ISBN-13 :
Rating : 4/5 (03 Downloads)

Synopsis External Cavity Mode-locked Semiconductor Lasers for the Generation of Ultra-low Noise Multi-gigahertz Frequency Combs and Applications in Multi-heterodyne Detection of Arbitrary Optical Waveforms by : Josue Davila-Rodriguez

The construction and characterization of ultra-low noise semiconductor-based mode-locked lasers as frequency comb sources with multi-gigahertz combline-to-combline spacing is studied in this dissertation. Several different systems were built and characterized. The first of these systems includes a novel mode-locking mechanism based on phase modulation and periodic spectral filtering. This mode-locked laser design uses the same intra-cavity elements for both mode-locking and frequency stabilization to an intra-cavity, 1,000 Finesse, Fabry-Pérot Etalon (FPE). On a separate effort, a mode-locked laser based on a Slab-Coupled Optical Waveguide Amplifier (SCOWA) was built. This system generates a pulse-train with residual timing jitter of [less than]2 fs and pulses compressible to [less than]1 ps. Amplification of these pulse-trains with an external SCOWA lead to 390 mW of average optical power without evident degradation in phase noise and pulses that are compressible to the sub-picosecond regime. Finally, a new laser is built using a 10,000 Finesse Fabry-Pérot Etalon held in a vacuum chamber. The fluctuations in the optical frequency of the individual comb-lines over time periods longer than 12 minutes are shown to be significantly reduced to [less than]100 kHz in a measurement that is limited by the linewidth of the reference source. The use of these comb sources as local oscillators in multi-heterodyne detection of arbitrary optical waveforms is explored in three different cases. 1) Sampling of mode-locked pulses, 2) sampling of phase modulated continuous wave light and 3) periodically filtered white light. The last experiment achieves spectral interferometry with unprecedented resolution.

Injection-locked Vertical Cavity Surface Emitting Lasers (VCSELs) for Optical Arbitrary Waveform Generation

Injection-locked Vertical Cavity Surface Emitting Lasers (VCSELs) for Optical Arbitrary Waveform Generation
Author :
Publisher :
Total Pages : 136
Release :
ISBN-10 : OCLC:913575276
ISBN-13 :
Rating : 4/5 (76 Downloads)

Synopsis Injection-locked Vertical Cavity Surface Emitting Lasers (VCSELs) for Optical Arbitrary Waveform Generation by : Sharad Bhooplapur

1. Modulators An array of VCSELs is packaged and characterized for use as a modulator for rapid-update pulse-shaping at GHz rates. The amplitude and phase modulation characteristics of an injection-locked VCSEL are simultaneously measured at GHz modulation rates. 2. Optical Frequency Comb Sources An actively mode-locked semiconductor laser was assembled, with a 12.5 GHz repetition rate, ~ 200 individually resolvable comblines directly out of the laser, and high frequency stability. In addition, optical frequency comb sources are generated by modulation of a single frequency laser. 3. High-resolution optical spectral demultiplexers The demultiplexers are implemented using bulk optics, and are used to spatially resolve individual optical comblines onto the modulator array. 4. Optical waveform measurement techniques Several techniques are used to measure generated waveforms, especially for spectral phase measurements, including multi-heterodyne phase retrieval. In addition, an architecture for discriminating between ultrashort encoded optical pulses with record high sensitivity is demonstrated.

Femtosecond Optical Frequency Comb: Principle, Operation and Applications

Femtosecond Optical Frequency Comb: Principle, Operation and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 373
Release :
ISBN-10 : 9780387237916
ISBN-13 : 0387237917
Rating : 4/5 (16 Downloads)

Synopsis Femtosecond Optical Frequency Comb: Principle, Operation and Applications by : Jun Ye

Over the last few years, there has been a convergence between the fields of ultrafast science, nonlinear optics, optical frequency metrology, and precision laser spectroscopy. These fields have been developing largely independently since the birth of the laser, reaching remarkable levels of performance. On the ultrafast frontier, pulses of only a few cycles long have been produced, while in optical spectroscopy, the precision and resolution have reached one part in Although these two achievements appear to be completely disconnected, advances in nonlinear optics provided the essential link between them. The resulting convergence has enabled unprecedented advances in the control of the electric field of the pulses produced by femtosecond mode-locked lasers. The corresponding spectrum consists of a comb of sharp spectral lines with well-defined frequencies. These new techniques and capabilities are generally known as “femtosecond comb technology. ” They have had dramatic impact on the diverse fields of precision measurement and extreme nonlinear optical physics. The historical background for these developments is provided in the Foreword by two of the pioneers of laser spectroscopy, John Hall and Theodor Hänsch. Indeed the developments described in this book were foreshadowed by Hänsch’s early work in the 1970s when he used picosecond pulses to demonstrate the connection between the time and frequency domains in laser spectroscopy. This work complemented the advances in precision laser stabilization developed by Hall.

High-speed Modelocked Semiconductor Lasers and Applications in Coherent Photonic Systems

High-speed Modelocked Semiconductor Lasers and Applications in Coherent Photonic Systems
Author :
Publisher :
Total Pages : 135
Release :
ISBN-10 : OCLC:945210575
ISBN-13 :
Rating : 4/5 (75 Downloads)

Synopsis High-speed Modelocked Semiconductor Lasers and Applications in Coherent Photonic Systems by : Wangkuen Lee

1.55-[micrometer] high-speed modelocked semiconductor lasers are theoretically and experimentally studied for various coherent photonic system applications. The modelocked semiconductor lasers (MSLs) are designed with high-speed ([greater than]5 GHz) external cavity configurations utilizing monolithic two-section curved semiconductor optical amplifiers. By exploiting the saturable absorber section of the monolithic device, passive or hybrid mode-locking techniques are used to generate short optical pulses with broadband optical frequency combs. Laser frequency stability is improved by applying the Pound-Drever-Hall (PDH) frequency stabilization technique to the MSLs. The improved laser performance after the frequency stabilization (a frequency drifting of less than 350 MHz), is extensively studied with respect to the laser linewidth (~ 3 MHz), the relative intensity noise (RIN) ([less than]-150 dB/Hz), as well as the modal RIN (~ 3 dB reduction). MSL to MSL, and tunable laser to MSL synchronization is demonstrated by using a dual-mode injection technique and a modulation sideband injection technique, respectively. Dynamic locking behavior and locking bandwidth are experimentally and theoretically studied. Stable laser synchronization between two MSLs is demonstrated with an injection seed power on the order of a few microwatt. Several coherent heterodyne detections based on the synchronized MSL systems are demonstrated for applications in microwave photonic links and ultra-dense wavelength division multiplexing (UD-WDM) system. In addition, efficient coherent homodyne balanced receivers based on synchronized MSLs are developed and demonstrated for a spectrally phase-encoded optical CDMA (SPE-OCDMA) system.

Injection Locking of Semiconductor Mode-locked Lasers for Long-term Stability of Widely Tunable Frequency Combs

Injection Locking of Semiconductor Mode-locked Lasers for Long-term Stability of Widely Tunable Frequency Combs
Author :
Publisher :
Total Pages : 124
Release :
ISBN-10 : OCLC:875166237
ISBN-13 :
Rating : 4/5 (37 Downloads)

Synopsis Injection Locking of Semiconductor Mode-locked Lasers for Long-term Stability of Widely Tunable Frequency Combs by : Charles G. Williams

Harmonically mode-locked semiconductor lasers with external ring cavities offer high repetition rate pulse trains while maintaining low optical linewidth via long cavity storage times. Single frequency injection locking generates widely-spaced and tunable frequency combs from these harmonically mode-locked lasers, while stabilizing the optical frequencies. The output is stabilized long-term with the help of a feedback loop utilizing either a novel technique based on Pound-Drever-Hall stabilization or by polarization spectroscopy. Error signals of both techniques are simulated and compared to experimentally obtained signals. Frequency combs spaced by 2.5 GHz and ~10 GHz are generated, with demonstrated optical sidemode suppression of unwanted modes of 36 dB, as well as RF supermode noise suppression of 14 dB for longer than 1 hour. In addition to the injection locking of actively harmonically mode-locked lasers, the injection locking technique for regeneratively mode-locked lasers, or Coupled Opto-Electronic Oscillators (COEOs), is also demonstrated and characterized extensively.

Single Longitudinal Mode External Cavity Semiconductor Lasers and Their Application in the Optical Generation of Radio Frequency Signals by Heterodyne Phase Locking

Single Longitudinal Mode External Cavity Semiconductor Lasers and Their Application in the Optical Generation of Radio Frequency Signals by Heterodyne Phase Locking
Author :
Publisher :
Total Pages : 402
Release :
ISBN-10 : OCLC:41414366
ISBN-13 :
Rating : 4/5 (66 Downloads)

Synopsis Single Longitudinal Mode External Cavity Semiconductor Lasers and Their Application in the Optical Generation of Radio Frequency Signals by Heterodyne Phase Locking by : Zhencan Frank Fan

Low Noise, High Repetition Rate Semiconductor-based Mode-locked Lasers for Signal Processing and Coherent Communications

Low Noise, High Repetition Rate Semiconductor-based Mode-locked Lasers for Signal Processing and Coherent Communications
Author :
Publisher :
Total Pages : 129
Release :
ISBN-10 : OCLC:311527760
ISBN-13 :
Rating : 4/5 (60 Downloads)

Synopsis Low Noise, High Repetition Rate Semiconductor-based Mode-locked Lasers for Signal Processing and Coherent Communications by : Franklyn John Quinlan

This dissertation details work on high repetition rate semiconductor mode-locked lasers. The qualities of stable pulse trains and stable optical frequency content are the focus of the work performed. First, applications of such lasers are reviewed with particular attention to applications only realizable with laser performance such as presented in this dissertation. Sources of timing jitter are also reviewed, as are techniques by which the timing jitter of a 10 GHz optical pulse train may be measured. Experimental results begin with an exploration of the consequences on the timing and amplitude jitter of the phase noise of an RF source used for mode-locking. These results lead to an ultralow timing jitter source, with 30 fs of timing jitter (1 Hz to 5 GHz, extrapolated). The focus of the work then shifts to generating a stabilized optical frequency comb. The first technique to generating the frequency comb is through optical injection. It is shown that not only can injection locking stabilize a mode-locked laser to the injection seed, but linewidth narrowing, timing jitter reduction and suppression of superfluous optical supermodes of a harmonically mode-locked laser also result. A scheme by which optical injection locking can be maintained long term is also proposed. Results on using an intracavity etalon for supermode suppression and optical frequency stabilization then follow. An etalon-based actively mode-locked laser is shown to have a timing jitter of only 20 fs (1Hz-5 GHz, extrapolated), optical linewidths below 10 kHz and optical frequency instabilities less than 400 kHz. By adding dispersion compensating fiber, the optical spectrum was broadened to 2 THz and 800 fs duration pulses were obtained. By using the etalon-based actively mode-locked laser as a basis, a completely self-contained frequency stabilized coupled optoelectronic oscillator was built and characterized. By simultaneously stabilizing the optical frequencies and the pulse repetition rate to the etalon, a 10 GHz comb source centered at 1550 nm was realized. This system maintains the high quality performance of the actively mode-locked laser while significantly reducing the size weight and power consumption of the system. This system also has the potential for outperforming the actively mode-locked laser by increasing the finesse and stability of the intracavity etalon. The final chapter of this dissertation outlines the future work on the etalon-based coupled optoelectronic oscillator, including the incorporation of a higher finesse, more stable etalon and active phase noise suppression of the RF signal. Two appendices give details on phase noise measurements that incorporate carrier suppression and the noise model for the coupled optoelectronic oscillator.

Strong Optical Injection Locking of Edge-emitting Lasers and Its Applications

Strong Optical Injection Locking of Edge-emitting Lasers and Its Applications
Author :
Publisher :
Total Pages : 318
Release :
ISBN-10 : UCAL:C3508933
ISBN-13 :
Rating : 4/5 (33 Downloads)

Synopsis Strong Optical Injection Locking of Edge-emitting Lasers and Its Applications by : Hyuk-Kee Sung

Semiconductor lasers are essential components that enable high-speed long-haul communication and have been widely used for various applications in photonics technology. Semiconductor lasers under optical injection locking exhibit superior performance over free-running lasers and provide useful applications not achievable through the free-running lasers. The performance of injection-locked lasers has been found to be significantly improved with stronger injection. In this dissertation, the characteristics and applications of semiconductor lasers under strong optical injection locking are presented and analyzed in various aspects. First, ultra-strong (injection ratio R ̃10 dB) optical injection locking properties are investigated experimentally and theoretically. Direct modulation responses of ultra-strong optical injection-locked distributed feedback (DFB) lasers show three distinctive modulation characteristics depending on frequency detuning values. These different optical properties and electric modulation characteristics can be utilized in various applications such as analog fiber optic link, broadband digital communications, RF photonics and opto-electronic oscillators (OEOs). Using the strong injection-locked lasers, a novel single sideband generation has been demonstrated. A modulation sideband on the longer wavelength side is enhanced due to the resonant amplification by the slave laser's cavity mode, resulting in a 12-dB asymmetry at 20-GHz RF modulation. The dispersion limited RF bandwidth has been greatly increased by maintaining the variation of fiber transmission response within 7 dB up to 20-GHz RF carrier frequency over 80-km fiber transmission. Second, to improve fiber optic link performances, gain-lever distributed Bragg reflector (DBR) lasers have been fabricated. With a gain-lever modulation, 9-dB increase of a link gain has been achieved compared with a standard modulation.

High Power Ultra-short Pulse Quantum-dot Lasers

High Power Ultra-short Pulse Quantum-dot Lasers
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 3659169625
ISBN-13 : 9783659169625
Rating : 4/5 (25 Downloads)

Synopsis High Power Ultra-short Pulse Quantum-dot Lasers by : Daniil Nikitichev

In this thesis, novel multi-section laser diodes based on quantum-dot material are designed and investigated which exhibit a number of advantages such as low threshold current density; temperature-insensitivity and suppress carrier diffusion due to discrete nature of density of state of quantum-dots. The spectral versatility in the range of 1.1 μm - 1.3 μm wavelengths is demonstrated through novel mode-locking regimes such as dual-wavelength mode-locking, wavelength bistability and broad tunability. Moreover, broad pulse repetition rate tuning using an external cavity configuration is presented. A high peak power of 17.7 W was generated from the quantum-dot laser as a result of the tapered geometry of the gain section of the laser has led to successful application of such device for two-photon imaging. Dual-wavelength mode-locking is demonstrated via ground (?=1180 nm) and excited (?=1263 nm) spectral bands with optical pulses from both states simultaneously in the 5-layer quantum-dot two-section diode laser. The widest spectral separation of 83 nm between the modes was achieved in a dual-wavelength mode-locked non-vibronic laser. Power and wavelength bistability are achieved in a mode-locked multi-section laser which active region incorporates non-identical QD layers grown by molecular beam epitaxy. As a result the wavelength can be electronically controlled between 1245 nm and 1290 nm by applying different voltages to the saturable absorber. Mode-locked or continuous-wave regimes are observed for both wavelengths over a 260 mA - 330 mA current ranges with average power up to 28 mW and 31 mW, respectively. In mode-locked regime, a repetition rate of 10 GHz of optical pulses as short as 4 ps is observed. Noticeable hysteresis of average power for different bias conditions is also demonstrated. The wavelength and power bistability in QD lasers are potentially suitable for flip-flop memory application. In addition, a unique mode-locked regime at expense of the reverse bias with 50 nm wavelength tuning range from 1245 nm to 1290 nm is also presented. Broad repetition rate tunability is shown from quantum-dot external cavity mode-locked 1.27 μm laser. The repetition rate from record low of 191 MHz to 1 GHz from fundamental mode-locking was achieved. Harmonic mode-locking allows further to increase tuning up to 6.8 GHz (34th-order harmonic) from 200 MHz fundamental mode-locking. High peak power of 1.5 W can be generated directly from two-section 4 mm long laser with bent waveguide at angle of 7° at 1.14 GHz repetition rate without the use of any pulse compression and optical amplifier. Stable mode-locking with an average power up to 60 mW, corresponding to 25 pJ pulse energy is also obtained at a repetition frequency of 2.4 GHz. The minimum time-bandwidth product of 1.01 is obtained with the pulse duration of 8.4 ps. Novel tapered quantum-dot lasers with a gain-guided geometry operating in a passively mode-locked regime have been investigated, using structures that incorporated either 5 or 10 quantum dot layers. The peak power of 3.6 W is achieved with pulse duration of 3.2 ps. Furthermore, the record peak power of 17.7 W and transform limited pulses of 672 fs were achieved with optimized structure. The generation of picosecond pulses with high average power of up to 209 mW was demonstrated, corresponding to 14.2 pJ pulse energy. The improved optical parameters of the tapered laser enable to achieve nonlinear images of fluorescent beads. Thus it is for the first time that QD based compact monolithic device enables to image biological samples using two-photon microscopy imaging technique.