Discrete Inverse and State Estimation Problems

Discrete Inverse and State Estimation Problems
Author :
Publisher : Cambridge University Press
Total Pages : 357
Release :
ISBN-10 : 9781139456937
ISBN-13 : 1139456938
Rating : 4/5 (37 Downloads)

Synopsis Discrete Inverse and State Estimation Problems by : Carl Wunsch

Addressing the problems of making inferences from noisy observations and imperfect theories, this 2006 book introduces many inference tools and practical applications. Starting with fundamental algebraic and statistical ideas, it is ideal for graduate students and researchers in oceanography, climate science, and geophysical fluid dynamics.

Parameter Estimation and Inverse Problems

Parameter Estimation and Inverse Problems
Author :
Publisher : Elsevier
Total Pages : 406
Release :
ISBN-10 : 9780128134238
ISBN-13 : 0128134232
Rating : 4/5 (38 Downloads)

Synopsis Parameter Estimation and Inverse Problems by : Richard C. Aster

Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who do not have an extensive mathematical background. The book is complemented by a companion website that includes MATLAB codes that correspond to examples that are illustrated with simple, easy to follow problems that illuminate the details of particular numerical methods. Updates to the new edition include more discussions of Laplacian smoothing, an expansion of basis function exercises, the addition of stochastic descent, an improved presentation of Fourier methods and exercises, and more. - Features examples that are illustrated with simple, easy to follow problems that illuminate the details of a particular numerical method - Includes an online instructor's guide that helps professors teach and customize exercises and select homework problems - Covers updated information on adjoint methods that are presented in an accessible manner

Inverse Problem Theory and Methods for Model Parameter Estimation

Inverse Problem Theory and Methods for Model Parameter Estimation
Author :
Publisher : SIAM
Total Pages : 349
Release :
ISBN-10 : 0898717922
ISBN-13 : 9780898717921
Rating : 4/5 (22 Downloads)

Synopsis Inverse Problem Theory and Methods for Model Parameter Estimation by : Albert Tarantola

While the prediction of observations is a forward problem, the use of actual observations to infer the properties of a model is an inverse problem. Inverse problems are difficult because they may not have a unique solution. The description of uncertainties plays a central role in the theory, which is based on probability theory. This book proposes a general approach that is valid for linear as well as for nonlinear problems. The philosophy is essentially probabilistic and allows the reader to understand the basic difficulties appearing in the resolution of inverse problems. The book attempts to explain how a method of acquisition of information can be applied to actual real-world problems, and many of the arguments are heuristic.

Computational Methods for Inverse Problems

Computational Methods for Inverse Problems
Author :
Publisher : SIAM
Total Pages : 195
Release :
ISBN-10 : 9780898717570
ISBN-13 : 0898717574
Rating : 4/5 (70 Downloads)

Synopsis Computational Methods for Inverse Problems by : Curtis R. Vogel

Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.

Optimal State Estimation

Optimal State Estimation
Author :
Publisher : John Wiley & Sons
Total Pages : 554
Release :
ISBN-10 : 9780470045336
ISBN-13 : 0470045337
Rating : 4/5 (36 Downloads)

Synopsis Optimal State Estimation by : Dan Simon

A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.

Discrete Signals and Inverse Problems

Discrete Signals and Inverse Problems
Author :
Publisher : John Wiley & Sons
Total Pages : 364
Release :
ISBN-10 : 9780470021880
ISBN-13 : 0470021888
Rating : 4/5 (80 Downloads)

Synopsis Discrete Signals and Inverse Problems by : J. Carlos Santamarina

Discrete Signals and Inverse Problems examines fundamental concepts necessary to engineers and scientists working with discrete signal processing and inverse problem solving, and places emphasis on the clear understanding of algorithms within the context of application needs. Based on the original ‘Introduction to Discrete Signals and Inverse Problems in Civil Engineering’, this expanded and enriched version: combines discrete signal processing and inverse problem solving in one book covers the most versatile tools that are needed to process engineering and scientific data presents step-by-step ‘implementation procedures’ for the most relevant algorithms provides instructive figures, solved examples and insightful exercises Discrete Signals and Inverse Problems is essential reading for experimental researchers and practicing engineers in civil, mechanical and electrical engineering, non-destructive testing and instrumentation. This book is also an excellent reference for advanced undergraduate students and graduate students in engineering and science.

Bulletin

Bulletin
Author :
Publisher :
Total Pages : 352
Release :
ISBN-10 : UCSD:31822033860446
ISBN-13 :
Rating : 4/5 (46 Downloads)

Synopsis Bulletin by : World Meteorological Organization

Dynamic Data-driven Simulation: Real-time Data For Dynamic System Analysis And Prediction

Dynamic Data-driven Simulation: Real-time Data For Dynamic System Analysis And Prediction
Author :
Publisher : World Scientific
Total Pages : 329
Release :
ISBN-10 : 9789811267192
ISBN-13 : 9811267197
Rating : 4/5 (92 Downloads)

Synopsis Dynamic Data-driven Simulation: Real-time Data For Dynamic System Analysis And Prediction by : Xiaolin Hu

This comprehensive book systematically introduces Dynamic Data Driven Simulation (DDDS) as a new simulation paradigm that makes real-time data and simulation model work together to enable simulation-based prediction/analysis.The text is significantly dedicated to introducing data assimilation as an enabling technique for DDDS. While data assimilation has been studied in other science fields (e.g., meteorology, oceanography), it is a new topic for the modeling and simulation community.This unique reference text bridges the two study areas of data assimilation and modelling and simulation, which have been developed largely independently from each other.

Optimal and Robust State Estimation

Optimal and Robust State Estimation
Author :
Publisher : John Wiley & Sons
Total Pages : 484
Release :
ISBN-10 : 9781119863090
ISBN-13 : 1119863090
Rating : 4/5 (90 Downloads)

Synopsis Optimal and Robust State Estimation by : Yuriy S. Shmaliy

A unified and systematic theoretical framework for solving problems related to finite impulse response (FIR) estimate Optimal and Robust State Estimation: Finite Impulse Response (FIR) and Kalman Approaches is a comprehensive investigation into batch state estimators and recursive forms. The work begins by introducing the reader to the state estimation approach and provides a brief historical overview. Next, the work discusses the specific properties of finite impulse response (FIR) state estimators. Further chapters give the basics of probability and stochastic processes, discuss the available linear and nonlinear state estimators, deal with optimal FIR filtering, and consider a limited memory batch and recursive algorithms. Other topics covered include solving the q-lag FIR smoothing problem, introducing the receding horizon (RH) FIR state estimation approach, and developing the theory of FIR state estimation under disturbances. The book closes by discussing the theory of FIR state estimation for uncertain systems and providing several applications where the FIR state estimators are used effectively. Key concepts covered in the work include: A holistic overview of the state estimation approach, which arose from the need to know the internal state of a real system, given that the input and output are both known Optimal, optimal unbiased, maximum likelihood, and unbiased and robust finite impulse response (FIR) structures FIR state estimation approach along with the infinite impulse response (IIR) and Kalman approaches Cost functions and the most critical properties of FIR and IIR state estimates Optimal and Robust State Estimation: Finite Impulse Response (FIR) and Kalman Approaches was written for professionals in the fields of microwave engineering, system engineering, and robotics who wish to move towards solving finite impulse response (FIR) estimate issues in both theoretical and practical applications. Graduate and senior undergraduate students with coursework dealing with state estimation will also be able to use the book to gain a valuable foundation of knowledge and become more adept in their chosen fields of study.

Estimation, Control, and the Discrete Kalman Filter

Estimation, Control, and the Discrete Kalman Filter
Author :
Publisher : Springer Science & Business Media
Total Pages : 286
Release :
ISBN-10 : 9781461245285
ISBN-13 : 1461245281
Rating : 4/5 (85 Downloads)

Synopsis Estimation, Control, and the Discrete Kalman Filter by : Donald E. Catlin

In 1960, R. E. Kalman published his celebrated paper on recursive min imum variance estimation in dynamical systems [14]. This paper, which introduced an algorithm that has since been known as the discrete Kalman filter, produced a virtual revolution in the field of systems engineering. Today, Kalman filters are used in such diverse areas as navigation, guid ance, oil drilling, water and air quality, and geodetic surveys. In addition, Kalman's work led to a multitude of books and papers on minimum vari ance estimation in dynamical systems, including one by Kalman and Bucy on continuous time systems [15]. Most of this work was done outside of the mathematics and statistics communities and, in the spirit of true academic parochialism, was, with a few notable exceptions, ignored by them. This text is my effort toward closing that chasm. For mathematics students, the Kalman filtering theorem is a beautiful illustration of functional analysis in action; Hilbert spaces being used to solve an extremely important problem in applied mathematics. For statistics students, the Kalman filter is a vivid example of Bayesian statistics in action. The present text grew out of a series of graduate courses given by me in the past decade. Most of these courses were given at the University of Mas sachusetts at Amherst.