Estimation Control And The Discrete Kalman Filter
Download Estimation Control And The Discrete Kalman Filter full books in PDF, epub, and Kindle. Read online free Estimation Control And The Discrete Kalman Filter ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Donald E. Catlin |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 286 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461245285 |
ISBN-13 |
: 1461245281 |
Rating |
: 4/5 (85 Downloads) |
Synopsis Estimation, Control, and the Discrete Kalman Filter by : Donald E. Catlin
In 1960, R. E. Kalman published his celebrated paper on recursive min imum variance estimation in dynamical systems [14]. This paper, which introduced an algorithm that has since been known as the discrete Kalman filter, produced a virtual revolution in the field of systems engineering. Today, Kalman filters are used in such diverse areas as navigation, guid ance, oil drilling, water and air quality, and geodetic surveys. In addition, Kalman's work led to a multitude of books and papers on minimum vari ance estimation in dynamical systems, including one by Kalman and Bucy on continuous time systems [15]. Most of this work was done outside of the mathematics and statistics communities and, in the spirit of true academic parochialism, was, with a few notable exceptions, ignored by them. This text is my effort toward closing that chasm. For mathematics students, the Kalman filtering theorem is a beautiful illustration of functional analysis in action; Hilbert spaces being used to solve an extremely important problem in applied mathematics. For statistics students, the Kalman filter is a vivid example of Bayesian statistics in action. The present text grew out of a series of graduate courses given by me in the past decade. Most of these courses were given at the University of Mas sachusetts at Amherst.
Author |
: Frank L. Lewis |
Publisher |
: CRC Press |
Total Pages |
: 546 |
Release |
: 2017-12-19 |
ISBN-10 |
: 9781420008296 |
ISBN-13 |
: 1420008293 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Optimal and Robust Estimation by : Frank L. Lewis
More than a decade ago, world-renowned control systems authority Frank L. Lewis introduced what would become a standard textbook on estimation, under the title Optimal Estimation, used in top universities throughout the world. The time has come for a new edition of this classic text, and Lewis enlisted the aid of two accomplished experts to bring the book completely up to date with the estimation methods driving today's high-performance systems. A Classic Revisited Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition reflects new developments in estimation theory and design techniques. As the title suggests, the major feature of this edition is the inclusion of robust methods. Three new chapters cover the robust Kalman filter, H-infinity filtering, and H-infinity filtering of discrete-time systems. Modern Tools for Tomorrow's Engineers This text overflows with examples that highlight practical applications of the theory and concepts. Design algorithms appear conveniently in tables, allowing students quick reference, easy implementation into software, and intuitive comparisons for selecting the best algorithm for a given application. In addition, downloadable MATLAB® code allows students to gain hands-on experience with industry-standard software tools for a wide variety of applications. This cutting-edge and highly interactive text makes teaching, and learning, estimation methods easier and more modern than ever.
Author |
: Felix Govaers |
Publisher |
: BoD – Books on Demand |
Total Pages |
: 130 |
Release |
: 2019-05-22 |
ISBN-10 |
: 9781838805364 |
ISBN-13 |
: 1838805362 |
Rating |
: 4/5 (64 Downloads) |
Synopsis Introduction and Implementations of the Kalman Filter by : Felix Govaers
Sensor data fusion is the process of combining error-prone, heterogeneous, incomplete, and ambiguous data to gather a higher level of situational awareness. In principle, all living creatures are fusing information from their complementary senses to coordinate their actions and to detect and localize danger. In sensor data fusion, this process is transferred to electronic systems, which rely on some "awareness" of what is happening in certain areas of interest. By means of probability theory and statistics, it is possible to model the relationship between the state space and the sensor data. The number of ingredients of the resulting Kalman filter is limited, but its applications are not.
Author |
: S. M. Bozic |
Publisher |
: John Wiley & Sons |
Total Pages |
: 180 |
Release |
: 1994-10-11 |
ISBN-10 |
: STANFORD:36105017101754 |
ISBN-13 |
: |
Rating |
: 4/5 (54 Downloads) |
Synopsis Digital and Kalman Filtering by : S. M. Bozic
Interest in digital filtering techniques continues to grow with the general increase in the use of digital processors. The first five chapters of this book form an introduction to digital filtering, while the following four extend the subject to cover the filtering of noisy data in order to extract a signal. The book is suitable for use by final year undergraduates, or for MSc and MEng courses. The text includes worked examples and problems with solutions. In this new edition, some new practical material and problems are added, and there are new introductory sections on topics such as wave digital filters and multirate filters. This continues to be the book that introduces both the theory of digital filters and their use in extracting information from noisy data, in an optimal way.
Author |
: Dan Simon |
Publisher |
: John Wiley & Sons |
Total Pages |
: 554 |
Release |
: 2006-06-19 |
ISBN-10 |
: 9780470045336 |
ISBN-13 |
: 0470045337 |
Rating |
: 4/5 (36 Downloads) |
Synopsis Optimal State Estimation by : Dan Simon
A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.
Author |
: Mohinder S. Grewal |
Publisher |
: John Wiley & Sons |
Total Pages |
: 639 |
Release |
: 2015-02-02 |
ISBN-10 |
: 9781118984963 |
ISBN-13 |
: 111898496X |
Rating |
: 4/5 (63 Downloads) |
Synopsis Kalman Filtering by : Mohinder S. Grewal
The definitive textbook and professional reference on Kalman Filtering – fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering. Authors Grewal and Andrews draw upon their decades of experience to offer an in-depth examination of the subtleties, common pitfalls, and limitations of estimation theory as it applies to real-world situations. They present many illustrative examples including adaptations for nonlinear filtering, global navigation satellite systems, the error modeling of gyros and accelerometers, inertial navigation systems, and freeway traffic control. Kalman Filtering: Theory and Practice Using MATLAB, Fourth Edition is an ideal textbook in advanced undergraduate and beginning graduate courses in stochastic processes and Kalman filtering. It is also appropriate for self-instruction or review by practicing engineers and scientists who want to learn more about this important topic.
Author |
: Brian D. O. Anderson |
Publisher |
: Courier Corporation |
Total Pages |
: 370 |
Release |
: 2012-05-23 |
ISBN-10 |
: 9780486136899 |
ISBN-13 |
: 0486136892 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Optimal Filtering by : Brian D. O. Anderson
Graduate-level text extends studies of signal processing, particularly regarding communication systems and digital filtering theory. Topics include filtering, linear systems, and estimation; discrete-time Kalman filter; time-invariant filters; more. 1979 edition.
Author |
: Bruce P. Gibbs |
Publisher |
: John Wiley & Sons |
Total Pages |
: 559 |
Release |
: 2011-03-29 |
ISBN-10 |
: 9781118003169 |
ISBN-13 |
: 1118003160 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Advanced Kalman Filtering, Least-Squares and Modeling by : Bruce P. Gibbs
This book is intended primarily as a handbook for engineers who must design practical systems. Its primary goal is to discuss model development in sufficient detail so that the reader may design an estimator that meets all application requirements and is robust to modeling assumptions. Since it is sometimes difficult to a priori determine the best model structure, use of exploratory data analysis to define model structure is discussed. Methods for deciding on the “best” model are also presented. A second goal is to present little known extensions of least squares estimation or Kalman filtering that provide guidance on model structure and parameters, or make the estimator more robust to changes in real-world behavior. A third goal is discussion of implementation issues that make the estimator more accurate or efficient, or that make it flexible so that model alternatives can be easily compared. The fourth goal is to provide the designer/analyst with guidance in evaluating estimator performance and in determining/correcting problems. The final goal is to provide a subroutine library that simplifies implementation, and flexible general purpose high-level drivers that allow both easy analysis of alternative models and access to extensions of the basic filtering. Supplemental materials and up-to-date errata are downloadable at http://booksupport.wiley.com.
Author |
: Geir Evensen |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 285 |
Release |
: 2006-12-22 |
ISBN-10 |
: 9783540383017 |
ISBN-13 |
: 3540383018 |
Rating |
: 4/5 (17 Downloads) |
Synopsis Data Assimilation by : Geir Evensen
This book reviews popular data-assimilation methods, such as weak and strong constraint variational methods, ensemble filters and smoothers. The author shows how different methods can be derived from a common theoretical basis, as well as how they differ or are related to each other, and which properties characterize them, using several examples. Readers will appreciate the included introductory material and detailed derivations in the text, and a supplemental web site.
Author |
: Torsten Söderström |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 410 |
Release |
: 2002-07-26 |
ISBN-10 |
: 1852336498 |
ISBN-13 |
: 9781852336493 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Discrete-time Stochastic Systems by : Torsten Söderström
This comprehensive introduction to the estimation and control of dynamic stochastic systems provides complete derivations of key results. The second edition includes improved and updated material, and a new presentation of polynomial control and new derivation of linear-quadratic-Gaussian control.