Differential Equations From Calculus To Dynamical Systems Second Edition
Download Differential Equations From Calculus To Dynamical Systems Second Edition full books in PDF, epub, and Kindle. Read online free Differential Equations From Calculus To Dynamical Systems Second Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Virginia W. Noonburg |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 402 |
Release |
: 2020-08-28 |
ISBN-10 |
: 9781470463298 |
ISBN-13 |
: 1470463296 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Differential Equations: From Calculus to Dynamical Systems: Second Edition by : Virginia W. Noonburg
A thoroughly modern textbook for the sophomore-level differential equations course. The examples and exercises emphasize modeling not only in engineering and physics but also in applied mathematics and biology. There is an early introduction to numerical methods and, throughout, a strong emphasis on the qualitative viewpoint of dynamical systems. Bifurcations and analysis of parameter variation is a persistent theme. Presuming previous exposure to only two semesters of calculus, necessary linear algebra is developed as needed. The exposition is very clear and inviting. The book would serve well for use in a flipped-classroom pedagogical approach or for self-study for an advanced undergraduate or beginning graduate student. This second edition of Noonburg's best-selling textbook includes two new chapters on partial differential equations, making the book usable for a two-semester sequence in differential equations. It includes exercises, examples, and extensive student projects taken from the current mathematical and scientific literature.
Author |
: Virginia W. Noonburg |
Publisher |
: Mathematical Association of America |
Total Pages |
: 0 |
Release |
: 2015-08-20 |
ISBN-10 |
: 1939512042 |
ISBN-13 |
: 9781939512048 |
Rating |
: 4/5 (42 Downloads) |
Synopsis Ordinary Differential Equations by : Virginia W. Noonburg
Techniques for studying ordinary differential equations (ODEs) have become part of the required toolkit for students in the applied sciences. This book presents a modern treatment of the material found in a first undergraduate course in ODEs. Standard analytical methods for first- and second-order equations are covered first, followed by numerical and graphical methods, and bifurcation theory. Higher dimensional theory follows next via a study of linear systems of first-order equations, including background material in matrix algebra. A phase plane analysis of two-dimensional nonlinear systems is a highlight, while an introduction to dynamical systems and an extension of bifurcation theory to cover systems of equations will be of particular interest to biologists. With an emphasis on real-world problems, this book is an ideal basis for an undergraduate course in engineering and applied sciences such as biology, or as a refresher for beginning graduate students in these areas.
Author |
: Gerald Teschl |
Publisher |
: American Mathematical Society |
Total Pages |
: 370 |
Release |
: 2024-01-12 |
ISBN-10 |
: 9781470476410 |
ISBN-13 |
: 147047641X |
Rating |
: 4/5 (10 Downloads) |
Synopsis Ordinary Differential Equations and Dynamical Systems by : Gerald Teschl
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Author |
: Morris W. Hirsch |
Publisher |
: Academic Press |
Total Pages |
: 433 |
Release |
: 2004 |
ISBN-10 |
: 9780123497031 |
ISBN-13 |
: 0123497035 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Differential Equations, Dynamical Systems, and an Introduction to Chaos by : Morris W. Hirsch
Thirty years in the making, this revised text by three of the world's leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra. The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of.
Author |
: James D. Meiss |
Publisher |
: SIAM |
Total Pages |
: 410 |
Release |
: 2017-01-24 |
ISBN-10 |
: 9781611974645 |
ISBN-13 |
: 161197464X |
Rating |
: 4/5 (45 Downloads) |
Synopsis Differential Dynamical Systems, Revised Edition by : James D. Meiss
Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.
Author |
: Stephen L. Campbell |
Publisher |
: Princeton University Press |
Total Pages |
: 445 |
Release |
: 2011-10-14 |
ISBN-10 |
: 9781400841325 |
ISBN-13 |
: 1400841321 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Introduction to Differential Equations with Dynamical Systems by : Stephen L. Campbell
Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.
Author |
: Robert Devaney |
Publisher |
: CRC Press |
Total Pages |
: 280 |
Release |
: 2018-03-09 |
ISBN-10 |
: 9780429981937 |
ISBN-13 |
: 0429981937 |
Rating |
: 4/5 (37 Downloads) |
Synopsis An Introduction To Chaotic Dynamical Systems by : Robert Devaney
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.
Author |
: Ferdinand Verhulst |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 287 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642971495 |
ISBN-13 |
: 3642971490 |
Rating |
: 4/5 (95 Downloads) |
Synopsis Nonlinear Differential Equations and Dynamical Systems by : Ferdinand Verhulst
Bridging the gap between elementary courses and the research literature in this field, the book covers the basic concepts necessary to study differential equations. Stability theory is developed, starting with linearisation methods going back to Lyapunov and Poincaré, before moving on to the global direct method. The Poincaré-Lindstedt method is introduced to approximate periodic solutions, while at the same time proving existence by the implicit function theorem. The final part covers relaxation oscillations, bifurcation theory, centre manifolds, chaos in mappings and differential equations, and Hamiltonian systems. The subject material is presented from both the qualitative and the quantitative point of view, with many examples to illustrate the theory, enabling the reader to begin research after studying this book.
Author |
: Lawrence Perko |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 530 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781468402490 |
ISBN-13 |
: 1468402498 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Differential Equations and Dynamical Systems by : Lawrence Perko
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.
Author |
: Edward R. Scheinerman |
Publisher |
: Courier Corporation |
Total Pages |
: 402 |
Release |
: 2012-01-01 |
ISBN-10 |
: 9780486485942 |
ISBN-13 |
: 0486485943 |
Rating |
: 4/5 (42 Downloads) |
Synopsis Invitation to Dynamical Systems by : Edward R. Scheinerman
This text is designed for those who wish to study mathematics beyond linear algebra but are not ready for abstract material. Rather than a theorem-proof-corollary-remark style of exposition, it stresses geometry, intuition, and dynamical systems. An appendix explains how to write MATLAB, Mathematica, and C programs to compute dynamical systems. 1996 edition.