Combinatorics for Computer Science

Combinatorics for Computer Science
Author :
Publisher : Courier Corporation
Total Pages : 548
Release :
ISBN-10 : 0486420760
ISBN-13 : 9780486420769
Rating : 4/5 (60 Downloads)

Synopsis Combinatorics for Computer Science by : Stanley Gill Williamson

Useful guide covers two major subdivisions of combinatorics — enumeration and graph theory — with emphasis on conceptual needs of computer science. Each part is divided into a "basic concepts" chapter emphasizing intuitive needs of the subject, followed by four "topics" chapters that explore these ideas in depth. Invaluable practical resource for graduate students, advanced undergraduates, and professionals with an interest in algorithm design and other aspects of computer science and combinatorics. References for Linear Order & for Graphs, Trees, and Recursions. 219 figures.

Extremal Combinatorics

Extremal Combinatorics
Author :
Publisher : Springer Science & Business Media
Total Pages : 389
Release :
ISBN-10 : 9783662046500
ISBN-13 : 3662046504
Rating : 4/5 (00 Downloads)

Synopsis Extremal Combinatorics by : Stasys Jukna

This is a concise, up-to-date introduction to extremal combinatorics for non-specialists. Strong emphasis is made on theorems with particularly elegant and informative proofs which may be called the gems of the theory. A wide spectrum of the most powerful combinatorial tools is presented, including methods of extremal set theory, the linear algebra method, the probabilistic method and fragments of Ramsey theory. A thorough discussion of recent applications to computer science illustrates the inherent usefulness of these methods.

Lessons in Enumerative Combinatorics

Lessons in Enumerative Combinatorics
Author :
Publisher : Springer Nature
Total Pages : 479
Release :
ISBN-10 : 9783030712501
ISBN-13 : 3030712508
Rating : 4/5 (01 Downloads)

Synopsis Lessons in Enumerative Combinatorics by : Ömer Eğecioğlu

This textbook introduces enumerative combinatorics through the framework of formal languages and bijections. By starting with elementary operations on words and languages, the authors paint an insightful, unified picture for readers entering the field. Numerous concrete examples and illustrative metaphors motivate the theory throughout, while the overall approach illuminates the important connections between discrete mathematics and theoretical computer science. Beginning with the basics of formal languages, the first chapter quickly establishes a common setting for modeling and counting classical combinatorial objects and constructing bijective proofs. From here, topics are modular and offer substantial flexibility when designing a course. Chapters on generating functions and partitions build further fundamental tools for enumeration and include applications such as a combinatorial proof of the Lagrange inversion formula. Connections to linear algebra emerge in chapters studying Cayley trees, determinantal formulas, and the combinatorics that lie behind the classical Cayley–Hamilton theorem. The remaining chapters range across the Inclusion-Exclusion Principle, graph theory and coloring, exponential structures, matching and distinct representatives, with each topic opening many doors to further study. Generous exercise sets complement all chapters, and miscellaneous sections explore additional applications. Lessons in Enumerative Combinatorics captures the authors' distinctive style and flair for introducing newcomers to combinatorics. The conversational yet rigorous presentation suits students in mathematics and computer science at the graduate, or advanced undergraduate level. Knowledge of single-variable calculus and the basics of discrete mathematics is assumed; familiarity with linear algebra will enhance the study of certain chapters.

An Introduction to Computational Combinatorics

An Introduction to Computational Combinatorics
Author :
Publisher : CUP Archive
Total Pages : 228
Release :
ISBN-10 : 0521224276
ISBN-13 : 9780521224277
Rating : 4/5 (76 Downloads)

Synopsis An Introduction to Computational Combinatorics by : E. S. Page

This book describes algorithms of mathematical methods and illustrates their application with examples. The mathematical background needed is elementary algebra and calculus.

Foundations of Combinatorics with Applications

Foundations of Combinatorics with Applications
Author :
Publisher : Courier Corporation
Total Pages : 789
Release :
ISBN-10 : 9780486151502
ISBN-13 : 0486151506
Rating : 4/5 (02 Downloads)

Synopsis Foundations of Combinatorics with Applications by : Edward A. Bender

This introduction to combinatorics, the foundation of the interaction between computer science and mathematics, is suitable for upper-level undergraduates and graduate students in engineering, science, and mathematics. The four-part treatment begins with a section on counting and listing that covers basic counting, functions, decision trees, and sieving methods. The following section addresses fundamental concepts in graph theory and a sampler of graph topics. The third part examines a variety of applications relevant to computer science and mathematics, including induction and recursion, sorting theory, and rooted plane trees. The final section, on generating functions, offers students a powerful tool for studying counting problems. Numerous exercises appear throughout the text, along with notes and references. The text concludes with solutions to odd-numbered exercises and to all appendix exercises.

Analytic Combinatorics

Analytic Combinatorics
Author :
Publisher : Cambridge University Press
Total Pages : 825
Release :
ISBN-10 : 9781139477161
ISBN-13 : 1139477161
Rating : 4/5 (61 Downloads)

Synopsis Analytic Combinatorics by : Philippe Flajolet

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.

Combinatorial Methods with Computer Applications

Combinatorial Methods with Computer Applications
Author :
Publisher : CRC Press
Total Pages : 664
Release :
ISBN-10 : 9781584887447
ISBN-13 : 1584887443
Rating : 4/5 (47 Downloads)

Synopsis Combinatorial Methods with Computer Applications by : Jonathan L. Gross

This combinatorics text provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. It presents the computer and software algorithms in pseudo-code and incorporates definitions, theorems, proofs, examples, and nearly 300 illustrations as pedagogical elements of the exposition. Numerous problems, solutions, and hints reinforce basic skills and assist with creative problem solving. The author also offers a website with extensive graph theory informational resources as well as a computational engine to help with calculations for some of the exercises.

Computing and Combinatorics

Computing and Combinatorics
Author :
Publisher : Springer
Total Pages : 784
Release :
ISBN-10 : 9783319947761
ISBN-13 : 3319947761
Rating : 4/5 (61 Downloads)

Synopsis Computing and Combinatorics by : Lusheng Wang

This book constitutes the proceedings of the 24th International Conference on Computing and Combinatorics, COCOON 2018, held in Qing Dao, China, in July 2018. The 62 papers presented in this volume were carefully reviewed and selected from 120 submissions. They deal with the areas of algorithms, theory of computation, computational complexity, and combinatorics related to computing.

Combinatorics and Probability

Combinatorics and Probability
Author :
Publisher : Cambridge University Press
Total Pages : 27
Release :
ISBN-10 : 9780521872072
ISBN-13 : 0521872073
Rating : 4/5 (72 Downloads)

Synopsis Combinatorics and Probability by : Graham Brightwell

This volume celebrating the 60th birthday of Béla Bollobás presents the state of the art in combinatorics.

Notes on Introductory Combinatorics

Notes on Introductory Combinatorics
Author :
Publisher : Springer Science & Business Media
Total Pages : 202
Release :
ISBN-10 : 9781475711011
ISBN-13 : 1475711018
Rating : 4/5 (11 Downloads)

Synopsis Notes on Introductory Combinatorics by : George Polya

In the winter of 1978, Professor George P61ya and I jointly taught Stanford University's introductory combinatorics course. This was a great opportunity for me, as I had known of Professor P61ya since having read his classic book, How to Solve It, as a teenager. Working with P6lya, who ·was over ninety years old at the time, was every bit as rewarding as I had hoped it would be. His creativity, intelligence, warmth and generosity of spirit, and wonderful gift for teaching continue to be an inspiration to me. Combinatorics is one of the branches of mathematics that play a crucial role in computer sCience, since digital computers manipulate discrete, finite objects. Combinatorics impinges on computing in two ways. First, the properties of graphs and other combinatorial objects lead directly to algorithms for solving graph-theoretic problems, which have widespread application in non-numerical as well as in numerical computing. Second, combinatorial methods provide many analytical tools that can be used for determining the worst-case and expected performance of computer algorithms. A knowledge of combinatorics will serve the computer scientist well. Combinatorics can be classified into three types: enumerative, eXistential, and constructive. Enumerative combinatorics deals with the counting of combinatorial objects. Existential combinatorics studies the existence or nonexistence of combinatorial configurations.