An Introduction to Computational Combinatorics

An Introduction to Computational Combinatorics
Author :
Publisher : CUP Archive
Total Pages : 228
Release :
ISBN-10 : 0521224276
ISBN-13 : 9780521224277
Rating : 4/5 (76 Downloads)

Synopsis An Introduction to Computational Combinatorics by : E. S. Page

This book describes algorithms of mathematical methods and illustrates their application with examples. The mathematical background needed is elementary algebra and calculus.

Computational Discrete Mathematics

Computational Discrete Mathematics
Author :
Publisher : Cambridge University Press
Total Pages : 615
Release :
ISBN-10 : 9781107268715
ISBN-13 : 1107268710
Rating : 4/5 (15 Downloads)

Synopsis Computational Discrete Mathematics by : Sriram Pemmaraju

This book was first published in 2003. Combinatorica, an extension to the popular computer algebra system Mathematica®, is the most comprehensive software available for teaching and research applications of discrete mathematics, particularly combinatorics and graph theory. This book is the definitive reference/user's guide to Combinatorica, with examples of all 450 Combinatorica functions in action, along with the associated mathematical and algorithmic theory. The authors cover classical and advanced topics on the most important combinatorial objects: permutations, subsets, partitions, and Young tableaux, as well as all important areas of graph theory: graph construction operations, invariants, embeddings, and algorithmic graph theory. In addition to being a research tool, Combinatorica makes discrete mathematics accessible in new and exciting ways to a wide variety of people, by encouraging computational experimentation and visualization. The book contains no formal proofs, but enough discussion to understand and appreciate all the algorithms and theorems it contains.

Algorithms in Combinatorial Geometry

Algorithms in Combinatorial Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 446
Release :
ISBN-10 : 354013722X
ISBN-13 : 9783540137221
Rating : 4/5 (2X Downloads)

Synopsis Algorithms in Combinatorial Geometry by : Herbert Edelsbrunner

Computational geometry as an area of research in its own right emerged in the early seventies of this century. Right from the beginning, it was obvious that strong connections of various kinds exist to questions studied in the considerably older field of combinatorial geometry. For example, the combinatorial structure of a geometric problem usually decides which algorithmic method solves the problem most efficiently. Furthermore, the analysis of an algorithm often requires a great deal of combinatorial knowledge. As it turns out, however, the connection between the two research areas commonly referred to as computa tional geometry and combinatorial geometry is not as lop-sided as it appears. Indeed, the interest in computational issues in geometry gives a new and con structive direction to the combinatorial study of geometry. It is the intention of this book to demonstrate that computational and com binatorial investigations in geometry are doomed to profit from each other. To reach this goal, I designed this book to consist of three parts, acorn binatorial part, a computational part, and one that presents applications of the results of the first two parts. The choice of the topics covered in this book was guided by my attempt to describe the most fundamental algorithms in computational geometry that have an interesting combinatorial structure. In this early stage geometric transforms played an important role as they reveal connections between seemingly unrelated problems and thus help to structure the field.

Introduction to Combinatorial Theory

Introduction to Combinatorial Theory
Author :
Publisher :
Total Pages : 264
Release :
ISBN-10 : MINN:31951000333687X
ISBN-13 :
Rating : 4/5 (7X Downloads)

Synopsis Introduction to Combinatorial Theory by : R. C. Bose

A ``hands-on'' constructive and computational approach to combinatorial topics with real-life modern applications. Provides a simple treatment of the subject. Introduces topics such as counting, designs and graphs. The notation is standard and kept to a minimum. Chapters end with historical remarks and suggestions for further reading.

Combinatorial Algebraic Topology

Combinatorial Algebraic Topology
Author :
Publisher : Springer Science & Business Media
Total Pages : 416
Release :
ISBN-10 : 3540730516
ISBN-13 : 9783540730514
Rating : 4/5 (16 Downloads)

Synopsis Combinatorial Algebraic Topology by : Dimitry Kozlov

This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.

Combinatorial and Computational Geometry

Combinatorial and Computational Geometry
Author :
Publisher : Cambridge University Press
Total Pages : 640
Release :
ISBN-10 : 0521848628
ISBN-13 : 9780521848626
Rating : 4/5 (28 Downloads)

Synopsis Combinatorial and Computational Geometry by : Jacob E. Goodman

This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.

Bioinspired Computation in Combinatorial Optimization

Bioinspired Computation in Combinatorial Optimization
Author :
Publisher : Springer Science & Business Media
Total Pages : 215
Release :
ISBN-10 : 9783642165443
ISBN-13 : 3642165443
Rating : 4/5 (43 Downloads)

Synopsis Bioinspired Computation in Combinatorial Optimization by : Frank Neumann

Bioinspired computation methods such as evolutionary algorithms and ant colony optimization are being applied successfully to complex engineering problems and to problems from combinatorial optimization, and with this comes the requirement to more fully understand the computational complexity of these search heuristics. This is the first textbook covering the most important results achieved in this area. The authors study the computational complexity of bioinspired computation and show how runtime behavior can be analyzed in a rigorous way using some of the best-known combinatorial optimization problems -- minimum spanning trees, shortest paths, maximum matching, covering and scheduling problems. A feature of the book is the separate treatment of single- and multiobjective problems, the latter a domain where the development of the underlying theory seems to be lagging practical successes. This book will be very valuable for teaching courses on bioinspired computation and combinatorial optimization. Researchers will also benefit as the presentation of the theory covers the most important developments in the field over the last 10 years. Finally, with a focus on well-studied combinatorial optimization problems rather than toy problems, the book will also be very valuable for practitioners in this field.

Introductory Combinatorics

Introductory Combinatorics
Author :
Publisher : Harcourt Brace College Publishers
Total Pages : 648
Release :
ISBN-10 : UOM:39015019632101
ISBN-13 :
Rating : 4/5 (01 Downloads)

Synopsis Introductory Combinatorics by : Kenneth P. Bogart

Introductory, Combinatorics, Third Edition is designed for introductory courses in combinatorics, or more generally, discrete mathematics. The author, Kenneth Bogart, has chosen core material of value to students in a wide variety of disciplines: mathematics, computer science, statistics, operations research, physical sciences, and behavioral sciences. The rapid growth in the breadth and depth of the field of combinatorics in the last several decades, first in graph theory and designs and more recently in enumeration and ordered sets, has led to a recognition of combinatorics as a field with which the aspiring mathematician should become familiar. This long-overdue new edition of a popular set presents a broad comprehensive survey of modern combinatorics which is important to the various scientific fields of study.

A Walk Through Combinatorics

A Walk Through Combinatorics
Author :
Publisher : World Scientific
Total Pages : 492
Release :
ISBN-10 : 9789812568854
ISBN-13 : 9812568859
Rating : 4/5 (54 Downloads)

Synopsis A Walk Through Combinatorics by : Mikl¢s B¢na

This is a textbook for an introductory combinatorics course that can take up one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course. Just as with the first edition, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible for the talented and hard-working undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings and Eulerian and Hamiltonian cycles. The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, and algorithms and complexity. As the goal of the book is to encourage students to learn more combinatorics, every effort has been made to provide them with a not only useful, but also enjoyable and engaging reading.

Analytic Combinatorics

Analytic Combinatorics
Author :
Publisher : Cambridge University Press
Total Pages : 825
Release :
ISBN-10 : 9781139477161
ISBN-13 : 1139477161
Rating : 4/5 (61 Downloads)

Synopsis Analytic Combinatorics by : Philippe Flajolet

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.