Algorithms In Combinatorial Geometry
Download Algorithms In Combinatorial Geometry full books in PDF, epub, and Kindle. Read online free Algorithms In Combinatorial Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Herbert Edelsbrunner |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 446 |
Release |
: 1987-07-31 |
ISBN-10 |
: 354013722X |
ISBN-13 |
: 9783540137221 |
Rating |
: 4/5 (2X Downloads) |
Synopsis Algorithms in Combinatorial Geometry by : Herbert Edelsbrunner
Computational geometry as an area of research in its own right emerged in the early seventies of this century. Right from the beginning, it was obvious that strong connections of various kinds exist to questions studied in the considerably older field of combinatorial geometry. For example, the combinatorial structure of a geometric problem usually decides which algorithmic method solves the problem most efficiently. Furthermore, the analysis of an algorithm often requires a great deal of combinatorial knowledge. As it turns out, however, the connection between the two research areas commonly referred to as computa tional geometry and combinatorial geometry is not as lop-sided as it appears. Indeed, the interest in computational issues in geometry gives a new and con structive direction to the combinatorial study of geometry. It is the intention of this book to demonstrate that computational and com binatorial investigations in geometry are doomed to profit from each other. To reach this goal, I designed this book to consist of three parts, acorn binatorial part, a computational part, and one that presents applications of the results of the first two parts. The choice of the topics covered in this book was guided by my attempt to describe the most fundamental algorithms in computational geometry that have an interesting combinatorial structure. In this early stage geometric transforms played an important role as they reveal connections between seemingly unrelated problems and thus help to structure the field.
Author |
: Martin Grötschel |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 374 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642978814 |
ISBN-13 |
: 3642978819 |
Rating |
: 4/5 (14 Downloads) |
Synopsis Geometric Algorithms and Combinatorial Optimization by : Martin Grötschel
Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.
Author |
: János Pach |
Publisher |
: John Wiley & Sons |
Total Pages |
: 376 |
Release |
: 2011-10-18 |
ISBN-10 |
: 9781118031360 |
ISBN-13 |
: 1118031369 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Combinatorial Geometry by : János Pach
A complete, self-contained introduction to a powerful and resurgingmathematical discipline . Combinatorial Geometry presents andexplains with complete proofs some of the most important resultsand methods of this relatively young mathematical discipline,started by Minkowski, Fejes Toth, Rogers, and Erd???s. Nearly halfthe results presented in this book were discovered over the pasttwenty years, and most have never before appeared in any monograph.Combinatorial Geometry will be of particular interest tomathematicians, computer scientists, physicists, and materialsscientists interested in computational geometry, robotics, sceneanalysis, and computer-aided design. It is also a superb textbook,complete with end-of-chapter problems and hints to their solutionsthat help students clarify their understanding and test theirmastery of the material. Topics covered include: * Geometric number theory * Packing and covering with congruent convex disks * Extremal graph and hypergraph theory * Distribution of distances among finitely many points * Epsilon-nets and Vapnik--Chervonenkis dimension * Geometric graph theory * Geometric discrepancy theory * And much more
Author |
: Jacob E. Goodman |
Publisher |
: Cambridge University Press |
Total Pages |
: 640 |
Release |
: 2005-08-08 |
ISBN-10 |
: 0521848628 |
ISBN-13 |
: 9780521848626 |
Rating |
: 4/5 (28 Downloads) |
Synopsis Combinatorial and Computational Geometry by : Jacob E. Goodman
This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.
Author |
: Jean-Daniel Boissonnat |
Publisher |
: Cambridge University Press |
Total Pages |
: 548 |
Release |
: 1998-03-05 |
ISBN-10 |
: 0521565294 |
ISBN-13 |
: 9780521565295 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Algorithmic Geometry by : Jean-Daniel Boissonnat
The design and analysis of geometric algorithms have seen remarkable growth in recent years, due to their application in, for example, computer vision, graphics, medical imaging and CAD. The goals of this book are twofold: first to provide a coherent and systematic treatment of the foundations; secondly to present algorithmic solutions that are amenable to rigorous analysis and are efficient in practical situations. When possible, the algorithms are presented in their most general d-dimensional setting. Specific developments are given for the 2- or 3-dimensional cases when this results in significant improvements. The presentation is confined to Euclidean affine geometry, though the authors indicate whenever the treatment can be extended to curves and surfaces. The prerequisites for using the book are few, which will make it ideal for teaching advanced undergraduate or beginning graduate courses in computational geometry.
Author |
: Kurt Mehlhorn |
Publisher |
: Cambridge University Press |
Total Pages |
: 1050 |
Release |
: 1999-11-11 |
ISBN-10 |
: 0521563291 |
ISBN-13 |
: 9780521563291 |
Rating |
: 4/5 (91 Downloads) |
Synopsis LEDA by : Kurt Mehlhorn
LEDA is a library of efficient data types and algorithms and a platform for combinatorial and geometric computing on which application programs can be built. In each of the core computer science areas of data structures, graph and network algorithms, and computational geometry, LEDA covers all (and more) that is found in the standard textbooks. LEDA is the first such library; it is written in C++ and is available on many types of machine. Whilst the software is freely available worldwide and is installed at hundreds of sites, this is the first book devoted to the library. Written by the main authors of LEDA, it is the definitive account, describing how the system is constructed and operates and how it can be used. The authors supply ample examples from a range of areas to show how the library can be used in practice, making the book essential for all workers in algorithms, data structures and computational geometry.
Author |
: Herbert Edelsbrunner |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 423 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642615689 |
ISBN-13 |
: 3642615686 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Algorithms in Combinatorial Geometry by : Herbert Edelsbrunner
Computational geometry as an area of research in its own right emerged in the early seventies of this century. Right from the beginning, it was obvious that strong connections of various kinds exist to questions studied in the considerably older field of combinatorial geometry. For example, the combinatorial structure of a geometric problem usually decides which algorithmic method solves the problem most efficiently. Furthermore, the analysis of an algorithm often requires a great deal of combinatorial knowledge. As it turns out, however, the connection between the two research areas commonly referred to as computa tional geometry and combinatorial geometry is not as lop-sided as it appears. Indeed, the interest in computational issues in geometry gives a new and con structive direction to the combinatorial study of geometry. It is the intention of this book to demonstrate that computational and com binatorial investigations in geometry are doomed to profit from each other. To reach this goal, I designed this book to consist of three parts, acorn binatorial part, a computational part, and one that presents applications of the results of the first two parts. The choice of the topics covered in this book was guided by my attempt to describe the most fundamental algorithms in computational geometry that have an interesting combinatorial structure. In this early stage geometric transforms played an important role as they reveal connections between seemingly unrelated problems and thus help to structure the field.
Author |
: Franco P. Preparata |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 413 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461210986 |
ISBN-13 |
: 1461210984 |
Rating |
: 4/5 (86 Downloads) |
Synopsis Computational Geometry by : Franco P. Preparata
From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2
Author |
: Michel Marie Deza |
Publisher |
: Springer |
Total Pages |
: 580 |
Release |
: 2009-11-12 |
ISBN-10 |
: 9783642042959 |
ISBN-13 |
: 3642042953 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Geometry of Cuts and Metrics by : Michel Marie Deza
Cuts and metrics are well-known objects that arise - independently, but with many deep and fascinating connections - in diverse fields: in graph theory, combinatorial optimization, geometry of numbers, combinatorial matrix theory, statistical physics, VLSI design etc. This book presents a wealth of results, from different mathematical disciplines, in a unified comprehensive manner, and establishes new and old links, which cannot be found elsewhere. It provides a unique and invaluable source for researchers and graduate students. From the Reviews: "This book is definitely a milestone in the literature of integer programming and combinatorial optimization. It draws from the Interdisciplinarity of these fields [...]. With knowledge about the relevant terms, one can enjoy special subsections without being entirely familiar with the rest of the chapter. This makes it not only an interesting research book but even a dictionary. [...] The longer one works with it, the more beautiful it becomes." Optima 56, 1997.
Author |
: Janos Pach |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 342 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642580437 |
ISBN-13 |
: 3642580432 |
Rating |
: 4/5 (37 Downloads) |
Synopsis New Trends in Discrete and Computational Geometry by : Janos Pach
Discrete and computational geometry are two fields which in recent years have benefitted from the interaction between mathematics and computer science. The results are applicable in areas such as motion planning, robotics, scene analysis, and computer aided design. The book consists of twelve chapters summarizing the most recent results and methods in discrete and computational geometry. All authors are well-known experts in these fields. They give concise and self-contained surveys of the most efficient combinatorical, probabilistic and topological methods that can be used to design effective geometric algorithms for the applications mentioned above. Most of the methods and results discussed in the book have not appeared in any previously published monograph. In particular, this book contains the first systematic treatment of epsilon-nets, geometric tranversal theory, partitions of Euclidean spaces and a general method for the analysis of randomized geometric algorithms. Apart from mathematicians working in discrete and computational geometry this book will also be of great use to computer scientists and engineers, who would like to learn about the most recent results.