Character Map In Non-abelian Cohomology, The: Twisted, Differential, And Generalized

Character Map In Non-abelian Cohomology, The: Twisted, Differential, And Generalized
Author :
Publisher : World Scientific
Total Pages : 248
Release :
ISBN-10 : 9789811276712
ISBN-13 : 9811276714
Rating : 4/5 (12 Downloads)

Synopsis Character Map In Non-abelian Cohomology, The: Twisted, Differential, And Generalized by : Domenico Fiorenza

This book presents a novel development of fundamental and fascinating aspects of algebraic topology and mathematical physics: 'extra-ordinary' and further generalized cohomology theories enhanced to 'twisted' and differential-geometric form, with focus on, firstly, their rational approximation by generalized Chern character maps, and then, the resulting charge quantization laws in higher n-form gauge field theories appearing in string theory and the classification of topological quantum materials.Although crucial for understanding famously elusive effects in strongly interacting physics, the relevant higher non-abelian cohomology theory ('higher gerbes') has had an esoteric reputation and remains underdeveloped.Devoted to this end, this book's theme is that various generalized cohomology theories are best viewed through their classifying spaces (or moduli stacks) — not necessarily infinite-loop spaces — from which perspective the character map is really an incarnation of the fundamental theorem of rational homotopy theory, thereby not only uniformly subsuming the classical Chern character and a multitude of scattered variants that have been proposed, but now seamlessly applicable in the hitherto elusive generality of (twisted, differential, and) non-abelian cohomology.In laying out this result with plenty of examples, this book provides a modernized introduction and review of fundamental classical topics: 1. abstract homotopy theory via model categories; 2. generalized cohomology in its homotopical incarnation; 3. rational homotopy theory seen via homotopy Lie theory, whose fundamental theorem we recast as a (twisted) non-abelian de Rham theorem, which naturally induces the (twisted) non-abelian character map.

The Character Map in Non-abelian Cohomology

The Character Map in Non-abelian Cohomology
Author :
Publisher : World Scientific Publishing Company
Total Pages : 0
Release :
ISBN-10 : 9811276692
ISBN-13 : 9789811276699
Rating : 4/5 (92 Downloads)

Synopsis The Character Map in Non-abelian Cohomology by : Domenico Fiorenza

"Presents a novel development in fundamental aspects of algebraic topology and mathematical physics: existing "extra-ordinary" and further generalized Cohomology theories enhanced to "twisted", differential, and non-abelian Cohomology. Contains many examples and applications, as well as background materials for advanced students"--

Rethinking Thomas Kuhn’s Legacy

Rethinking Thomas Kuhn’s Legacy
Author :
Publisher : Springer Nature
Total Pages : 341
Release :
ISBN-10 : 9783031642296
ISBN-13 : 3031642295
Rating : 4/5 (96 Downloads)

Synopsis Rethinking Thomas Kuhn’s Legacy by : Yafeng Shan

Lecture Notes in Algebraic Topology

Lecture Notes in Algebraic Topology
Author :
Publisher : American Mathematical Society
Total Pages : 385
Release :
ISBN-10 : 9781470473686
ISBN-13 : 1470473682
Rating : 4/5 (86 Downloads)

Synopsis Lecture Notes in Algebraic Topology by : James F. Davis

The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.

Noncommutative Geometry

Noncommutative Geometry
Author :
Publisher : Springer
Total Pages : 364
Release :
ISBN-10 : 9783540397021
ISBN-13 : 3540397027
Rating : 4/5 (21 Downloads)

Synopsis Noncommutative Geometry by : Alain Connes

Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.

Differential Function Spectra, the Differential Becker-Gottlieb Transfer, and Applications to Differential Algebraic K-Theory

Differential Function Spectra, the Differential Becker-Gottlieb Transfer, and Applications to Differential Algebraic K-Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 177
Release :
ISBN-10 : 9781470446857
ISBN-13 : 1470446855
Rating : 4/5 (57 Downloads)

Synopsis Differential Function Spectra, the Differential Becker-Gottlieb Transfer, and Applications to Differential Algebraic K-Theory by : Ulrich Bunke

We develop differential algebraic K-theory for rings of integers in number fields and we construct a cycle map from geometrized bundles of modules over such a ring to the differential algebraic K-theory. We also treat some of the foundational aspects of differential cohomology, including differential function spectra and the differential Becker-Gottlieb transfer. We then state a transfer index conjecture about the equality of the Becker-Gottlieb transfer and the analytic transfer defined by Lott. In support of this conjecture, we derive some non-trivial consequences which are provable by independent means.

Stable Stems

Stable Stems
Author :
Publisher : American Mathematical Soc.
Total Pages : 174
Release :
ISBN-10 : 9781470437886
ISBN-13 : 1470437880
Rating : 4/5 (86 Downloads)

Synopsis Stable Stems by : Daniel C. Isaksen

The author presents a detailed analysis of 2-complete stable homotopy groups, both in the classical context and in the motivic context over C. He uses the motivic May spectral sequence to compute the cohomology of the motivic Steenrod algebra over C through the 70-stem. He then uses the motivic Adams spectral sequence to obtain motivic stable homotopy groups through the 59-stem. He also describes the complete calculation to the 65-stem, but defers the proofs in this range to forthcoming publications. In addition to finding all Adams differentials, the author also resolves all hidden extensions by 2, η, and ν through the 59-stem, except for a few carefully enumerated exceptions that remain unknown. The analogous classical stable homotopy groups are easy consequences. The author also computes the motivic stable homotopy groups of the cofiber of the motivic element τ. This computation is essential for resolving hidden extensions in the Adams spectral sequence. He shows that the homotopy groups of the cofiber of τ are the same as the E2-page of the classical Adams-Novikov spectral sequence. This allows him to compute the classical Adams-Novikov spectral sequence, including differentials and hidden extensions, in a larger range than was previously known.

Characteristic Classes

Characteristic Classes
Author :
Publisher : Princeton University Press
Total Pages : 342
Release :
ISBN-10 : 0691081220
ISBN-13 : 9780691081229
Rating : 4/5 (20 Downloads)

Synopsis Characteristic Classes by : John Willard Milnor

The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.

Mathematical Foundations of Quantum Field Theory and Perturbative String Theory

Mathematical Foundations of Quantum Field Theory and Perturbative String Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 370
Release :
ISBN-10 : 9780821851951
ISBN-13 : 0821851950
Rating : 4/5 (51 Downloads)

Synopsis Mathematical Foundations of Quantum Field Theory and Perturbative String Theory by : Hisham Sati

Conceptual progress in fundamental theoretical physics is linked with the search for the suitable mathematical structures that model the physical systems. Quantum field theory (QFT) has proven to be a rich source of ideas for mathematics for a long time. However, fundamental questions such as ``What is a QFT?'' did not have satisfactory mathematical answers, especially on spaces with arbitrary topology, fundamental for the formulation of perturbative string theory. This book contains a collection of papers highlighting the mathematical foundations of QFT and its relevance to perturbative string theory as well as the deep techniques that have been emerging in the last few years. The papers are organized under three main chapters: Foundations for Quantum Field Theory, Quantization of Field Theories, and Two-Dimensional Quantum Field Theories. An introduction, written by the editors, provides an overview of the main underlying themes that bind together the papers in the volume.

Problems on Mapping Class Groups and Related Topics

Problems on Mapping Class Groups and Related Topics
Author :
Publisher : American Mathematical Soc.
Total Pages : 384
Release :
ISBN-10 : 9780821838389
ISBN-13 : 0821838385
Rating : 4/5 (89 Downloads)

Synopsis Problems on Mapping Class Groups and Related Topics by : Benson Farb

The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II concentrates on connections with classification problems in 3-manifold theory, the theory of symplectic 4-manifolds, and algebraic geometry. A wide variety of problems, from understanding billiard trajectories to the classification of Kleinian groups, can be reduced to differential and synthetic geometry problems about moduli space. Such problems and connections are discussed in Part III. Mapping class groups are related, both concretely and philosophically, to a number of other groups, such as braid groups, lattices in semisimple Lie groups, and automorphism groups of free groups. Part IV concentrates on problems surrounding these relationships. This book should be of interest to anyone studying geometry, topology, algebraic geometry or infinite groups. It is meant to provide inspiration for everyone from graduate students to senior researchers.