Chaos on the Interval

Chaos on the Interval
Author :
Publisher : American Mathematical Soc.
Total Pages : 231
Release :
ISBN-10 : 9781470429560
ISBN-13 : 147042956X
Rating : 4/5 (60 Downloads)

Synopsis Chaos on the Interval by : Sylvie Ruette

The aim of this book is to survey the relations between the various kinds of chaos and related notions for continuous interval maps from a topological point of view. The papers on this topic are numerous and widely scattered in the literature; some of them are little known, difficult to find, or originally published in Russian, Ukrainian, or Chinese. Dynamical systems given by the iteration of a continuous map on an interval have been broadly studied because they are simple but nevertheless exhibit complex behaviors. They also allow numerical simulations, which enabled the discovery of some chaotic phenomena. Moreover, the “most interesting” part of some higher-dimensional systems can be of lower dimension, which allows, in some cases, boiling it down to systems in dimension one. Some of the more recent developments such as distributional chaos, the relation between entropy and Li-Yorke chaos, sequence entropy, and maps with infinitely many branches are presented in book form for the first time. The author gives complete proofs and addresses both graduate students and researchers.

CHAOS Report: Decision Latency Theory: It Is All About the Interval

CHAOS Report: Decision Latency Theory: It Is All About the Interval
Author :
Publisher : Lulu.com
Total Pages : 72
Release :
ISBN-10 : 9780692048306
ISBN-13 : 0692048308
Rating : 4/5 (06 Downloads)

Synopsis CHAOS Report: Decision Latency Theory: It Is All About the Interval by : James Johnson

The CHAOS Report: Decision Latency Theory: It¿s All About the Interval. This CHAOS Report 2018 presents the root cause of software project performance. The report also includes classic CHAOS data in different forms with many charts. Most of the charts come from the CHAOS database of over 50,000 in-depth project profiles from the fiscal years 2013 to 2017. A highlight of this report is our analysis and thought leadership what makes a project succeed and winning hand and what makes a losing hand.

An Introduction To Chaotic Dynamical Systems

An Introduction To Chaotic Dynamical Systems
Author :
Publisher : CRC Press
Total Pages : 280
Release :
ISBN-10 : 9780429981937
ISBN-13 : 0429981937
Rating : 4/5 (37 Downloads)

Synopsis An Introduction To Chaotic Dynamical Systems by : Robert Devaney

The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos
Author :
Publisher : CRC Press
Total Pages : 532
Release :
ISBN-10 : 9780429961113
ISBN-13 : 0429961111
Rating : 4/5 (13 Downloads)

Synopsis Nonlinear Dynamics and Chaos by : Steven H. Strogatz

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

The Theory of Chaotic Attractors

The Theory of Chaotic Attractors
Author :
Publisher : Springer Science & Business Media
Total Pages : 528
Release :
ISBN-10 : 0387403493
ISBN-13 : 9780387403496
Rating : 4/5 (93 Downloads)

Synopsis The Theory of Chaotic Attractors by : Brian R. Hunt

The editors felt that the time was right for a book on an important topic, the history and development of the notions of chaotic attractors and their "natu ral" invariant measures. We wanted to bring together a coherent collection of readable, interesting, outstanding papers for detailed study and comparison. We hope that this book will allow serious graduate students to hold seminars to study how the research in this field developed. Limitation of space forced us painfully to exclude many excellent, relevant papers, and the resulting choice reflects the interests of the editors. Since James Alan Yorke was born August 3, 1941, we chose to have this book commemorate his sixtieth birthday, honoring his research in this field. The editors are four of his collaborators. We would particularly like to thank Achi Dosanjh (senior editor math ematics), Elizabeth Young (assistant editor mathematics), Joel Ariaratnam (mathematics editorial), and Yong-Soon Hwang (book production editor) from Springer Verlag in New York for their efforts in publishing this book.

Chaos

Chaos
Author :
Publisher : Springer
Total Pages : 620
Release :
ISBN-10 : 9783642592812
ISBN-13 : 3642592813
Rating : 4/5 (12 Downloads)

Synopsis Chaos by : Kathleen Alligood

BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.

Bibliography On Chaos

Bibliography On Chaos
Author :
Publisher : World Scientific
Total Pages : 523
Release :
ISBN-10 : 9789814506366
ISBN-13 : 9814506362
Rating : 4/5 (66 Downloads)

Synopsis Bibliography On Chaos by : Bailin Hao

This volume is a collection of more than 7000 full titles of books and papers related to chaotic behaviour in nonlinear dynamics. Emphasis has been made on recent publications, but many publications which appeared before 1980 are also included. Many titles have been checked with the authors. The scope of the Bibliography is not restricted to physics and mathematics of chaos only. Applications of chaotic dynamics to other branches of natural and social sciences are also considered. Works related to chaotic dynamics, e.g., papers on turbulence dynamical systems theory and fractal geometry, are listed at the discretion of the author or the compiler. This Bibliography is expected to be an important reference book for libraries and individual researchers.

Ray and Wave Chaos in Ocean Acoustics

Ray and Wave Chaos in Ocean Acoustics
Author :
Publisher : World Scientific
Total Pages : 412
Release :
ISBN-10 : 9789814273176
ISBN-13 : 9814273171
Rating : 4/5 (76 Downloads)

Synopsis Ray and Wave Chaos in Ocean Acoustics by : Denis Makarov

A systematic study of chaotic ray dynamics in underwater acoustic waveguides began in the mid-1990s when it was realized that this factor plays a crucial role in long-range sound propagation in the ocean. The phenomenon of ray chaos and its manifestation at a finite wavelength ? wave chaos ? have been investigated by combining methods from the theory of wave propagation and the theory of dynamical and quantum chaos. This book is the first monograph summarizing results obtained in this field. Emphasis is made on the exploration of ray and modal structures of the wave field in an idealized environmental model with periodic range dependence and in a more realistic model with sound speed fluctuations induced by random internal waves. The book is intended for acousticians investigating the long-range sound transmission through the fluctuating ocean and also for researchers studying waveguide propagation in other media. It will be of major interest to scientists working in the field of dynamical and quantum chaos.

Chaos

Chaos
Author :
Publisher : World Scientific
Total Pages : 482
Release :
ISBN-10 : 9789814277662
ISBN-13 : 9814277665
Rating : 4/5 (62 Downloads)

Synopsis Chaos by : Angelo Vulpiani

Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.

Dynamical System and Chaos

Dynamical System and Chaos
Author :
Publisher : Springer Nature
Total Pages : 328
Release :
ISBN-10 : 9783031251542
ISBN-13 : 3031251547
Rating : 4/5 (42 Downloads)

Synopsis Dynamical System and Chaos by : Rui Dilão

This textbook introduces the language and the techniques of the theory of dynamical systems of finite dimension for an audience of physicists, engineers, and mathematicians at the beginning of graduation. Author addresses geometric, measure, and computational aspects of the theory of dynamical systems. Some freedom is used in the more formal aspects, using only proofs when there is an algorithmic advantage or because a result is simple and powerful. The first part is an introductory course on dynamical systems theory. It can be taught at the master's level during one semester, not requiring specialized mathematical training. In the second part, the author describes some applications of the theory of dynamical systems. Topics often appear in modern dynamical systems and complexity theories, such as singular perturbation theory, delayed equations, cellular automata, fractal sets, maps of the complex plane, and stochastic iterations of function systems are briefly explored for advanced students. The author also explores applications in mechanics, electromagnetism, celestial mechanics, nonlinear control theory, and macroeconomy. A set of problems consolidating the knowledge of the different subjects, including more elaborated exercises, are provided for all chapters.