Beginning Partial Differential Equations
Download Beginning Partial Differential Equations full books in PDF, epub, and Kindle. Read online free Beginning Partial Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Peter V. O'Neil |
Publisher |
: John Wiley & Sons |
Total Pages |
: 452 |
Release |
: 2014-05-07 |
ISBN-10 |
: 9781118629987 |
ISBN-13 |
: 1118629981 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Beginning Partial Differential Equations by : Peter V. O'Neil
A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible, combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger’s equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is organized around four themes: methods of solution for initial-boundary value problems; applications of partial differential equations; existence and properties of solutions; and the use of software to experiment with graphics and carry out computations. With a primary focus on wave and diffusion processes, Beginning Partial Differential Equations, Third Edition also includes: Proofs of theorems incorporated within the topical presentation, such as the existence of a solution for the Dirichlet problem The incorporation of MapleTM to perform computations and experiments Unusual applications, such as Poe’s pendulum Advanced topical coverage of special functions, such as Bessel, Legendre polynomials, and spherical harmonics Fourier and Laplace transform techniques to solve important problems Beginning of Partial Differential Equations, Third Edition is an ideal textbook for upper-undergraduate and first-year graduate-level courses in analysis and applied mathematics, science, and engineering.
Author |
: E. C. Zachmanoglou |
Publisher |
: Courier Corporation |
Total Pages |
: 434 |
Release |
: 2012-04-20 |
ISBN-10 |
: 9780486132174 |
ISBN-13 |
: 048613217X |
Rating |
: 4/5 (74 Downloads) |
Synopsis Introduction to Partial Differential Equations with Applications by : E. C. Zachmanoglou
This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.
Author |
: Michael Renardy |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 447 |
Release |
: 2006-04-18 |
ISBN-10 |
: 9780387216874 |
ISBN-13 |
: 0387216871 |
Rating |
: 4/5 (74 Downloads) |
Synopsis An Introduction to Partial Differential Equations by : Michael Renardy
Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.
Author |
: Walter A. Strauss |
Publisher |
: John Wiley & Sons |
Total Pages |
: 467 |
Release |
: 2007-12-21 |
ISBN-10 |
: 9780470054567 |
ISBN-13 |
: 0470054565 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Partial Differential Equations by : Walter A. Strauss
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Author |
: Peter V. O'Neil |
Publisher |
: John Wiley & Sons |
Total Pages |
: 516 |
Release |
: 1999 |
ISBN-10 |
: 0471238872 |
ISBN-13 |
: 9780471238874 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Beginning Partial Differential Equations by : Peter V. O'Neil
An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.
Author |
: David Borthwick |
Publisher |
: Springer |
Total Pages |
: 293 |
Release |
: 2017-01-12 |
ISBN-10 |
: 9783319489360 |
ISBN-13 |
: 3319489364 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Introduction to Partial Differential Equations by : David Borthwick
This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise. Within each section the author creates a narrative that answers the five questions: What is the scientific problem we are trying to understand? How do we model that with PDE? What techniques can we use to analyze the PDE? How do those techniques apply to this equation? What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.
Author |
: J. David Logan |
Publisher |
: John Wiley & Sons |
Total Pages |
: 416 |
Release |
: 2008-04-11 |
ISBN-10 |
: 9780470225950 |
ISBN-13 |
: 0470225955 |
Rating |
: 4/5 (50 Downloads) |
Synopsis An Introduction to Nonlinear Partial Differential Equations by : J. David Logan
Praise for the First Edition: "This book is well conceived and well written. The author has succeeded in producing a text on nonlinear PDEs that is not only quite readable but also accessible to students from diverse backgrounds." —SIAM Review A practical introduction to nonlinear PDEs and their real-world applications Now in a Second Edition, this popular book on nonlinear partial differential equations (PDEs) contains expanded coverage on the central topics of applied mathematics in an elementary, highly readable format and is accessible to students and researchers in the field of pure and applied mathematics. This book provides a new focus on the increasing use of mathematical applications in the life sciences, while also addressing key topics such as linear PDEs, first-order nonlinear PDEs, classical and weak solutions, shocks, hyperbolic systems, nonlinear diffusion, and elliptic equations. Unlike comparable books that typically only use formal proofs and theory to demonstrate results, An Introduction to Nonlinear Partial Differential Equations, Second Edition takes a more practical approach to nonlinear PDEs by emphasizing how the results are used, why they are important, and how they are applied to real problems. The intertwining relationship between mathematics and physical phenomena is discovered using detailed examples of applications across various areas such as biology, combustion, traffic flow, heat transfer, fluid mechanics, quantum mechanics, and the chemical reactor theory. New features of the Second Edition also include: Additional intermediate-level exercises that facilitate the development of advanced problem-solving skills New applications in the biological sciences, including age-structure, pattern formation, and the propagation of diseases An expanded bibliography that facilitates further investigation into specialized topics With individual, self-contained chapters and a broad scope of coverage that offers instructors the flexibility to design courses to meet specific objectives, An Introduction to Nonlinear Partial Differential Equations, Second Edition is an ideal text for applied mathematics courses at the upper-undergraduate and graduate levels. It also serves as a valuable resource for researchers and professionals in the fields of mathematics, biology, engineering, and physics who would like to further their knowledge of PDEs.
Author |
: Alexander Komech |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 165 |
Release |
: 2009-10-05 |
ISBN-10 |
: 9781441910950 |
ISBN-13 |
: 1441910956 |
Rating |
: 4/5 (50 Downloads) |
Synopsis Principles of Partial Differential Equations by : Alexander Komech
This concise book covers the classical tools of Partial Differential Equations Theory in today’s science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.
Author |
: Peter J. Olver |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 636 |
Release |
: 2013-11-08 |
ISBN-10 |
: 9783319020990 |
ISBN-13 |
: 3319020994 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Introduction to Partial Differential Equations by : Peter J. Olver
This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.
Author |
: Michael Shearer |
Publisher |
: Princeton University Press |
Total Pages |
: 286 |
Release |
: 2015-03-01 |
ISBN-10 |
: 9780691161297 |
ISBN-13 |
: 0691161291 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Partial Differential Equations by : Michael Shearer
An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors