An Introduction To Nonlinear Partial Differential Equations
Download An Introduction To Nonlinear Partial Differential Equations full books in PDF, epub, and Kindle. Read online free An Introduction To Nonlinear Partial Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: J. David Logan |
Publisher |
: John Wiley & Sons |
Total Pages |
: 416 |
Release |
: 2008-04-11 |
ISBN-10 |
: 9780470225950 |
ISBN-13 |
: 0470225955 |
Rating |
: 4/5 (50 Downloads) |
Synopsis An Introduction to Nonlinear Partial Differential Equations by : J. David Logan
Praise for the First Edition: "This book is well conceived and well written. The author has succeeded in producing a text on nonlinear PDEs that is not only quite readable but also accessible to students from diverse backgrounds." —SIAM Review A practical introduction to nonlinear PDEs and their real-world applications Now in a Second Edition, this popular book on nonlinear partial differential equations (PDEs) contains expanded coverage on the central topics of applied mathematics in an elementary, highly readable format and is accessible to students and researchers in the field of pure and applied mathematics. This book provides a new focus on the increasing use of mathematical applications in the life sciences, while also addressing key topics such as linear PDEs, first-order nonlinear PDEs, classical and weak solutions, shocks, hyperbolic systems, nonlinear diffusion, and elliptic equations. Unlike comparable books that typically only use formal proofs and theory to demonstrate results, An Introduction to Nonlinear Partial Differential Equations, Second Edition takes a more practical approach to nonlinear PDEs by emphasizing how the results are used, why they are important, and how they are applied to real problems. The intertwining relationship between mathematics and physical phenomena is discovered using detailed examples of applications across various areas such as biology, combustion, traffic flow, heat transfer, fluid mechanics, quantum mechanics, and the chemical reactor theory. New features of the Second Edition also include: Additional intermediate-level exercises that facilitate the development of advanced problem-solving skills New applications in the biological sciences, including age-structure, pattern formation, and the propagation of diseases An expanded bibliography that facilitates further investigation into specialized topics With individual, self-contained chapters and a broad scope of coverage that offers instructors the flexibility to design courses to meet specific objectives, An Introduction to Nonlinear Partial Differential Equations, Second Edition is an ideal text for applied mathematics courses at the upper-undergraduate and graduate levels. It also serves as a valuable resource for researchers and professionals in the fields of mathematics, biology, engineering, and physics who would like to further their knowledge of PDEs.
Author |
: J. David Logan |
Publisher |
: Wiley-Interscience |
Total Pages |
: 422 |
Release |
: 1994-04-06 |
ISBN-10 |
: UOM:39015032982582 |
ISBN-13 |
: |
Rating |
: 4/5 (82 Downloads) |
Synopsis An Introduction to Nonlinear Partial Differential Equations by : J. David Logan
Uses an analytical and techniques-oriented approach to present a concise introduction to the subject focusing on time-evolution problems. Emphasizes hyperbolic and parabolic problems and includes a range of applications--chemistry, porous media, biological problems, traffic flow, reactors, heat transfer and detonation. Packed with exercises, examples and illustrations.
Author |
: Tomás Roubicek |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 415 |
Release |
: 2006-01-17 |
ISBN-10 |
: 9783764373979 |
ISBN-13 |
: 3764373970 |
Rating |
: 4/5 (79 Downloads) |
Synopsis Nonlinear Partial Differential Equations with Applications by : Tomás Roubicek
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
Author |
: Michael Renardy |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 447 |
Release |
: 2006-04-18 |
ISBN-10 |
: 9780387216874 |
ISBN-13 |
: 0387216871 |
Rating |
: 4/5 (74 Downloads) |
Synopsis An Introduction to Partial Differential Equations by : Michael Renardy
Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.
Author |
: Lokenath Debnath |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 602 |
Release |
: 2013-11-11 |
ISBN-10 |
: 9781489928467 |
ISBN-13 |
: 1489928464 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Nonlinear Partial Differential Equations for Scientists and Engineers by : Lokenath Debnath
This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.
Author |
: Felipe Linares |
Publisher |
: Springer |
Total Pages |
: 308 |
Release |
: 2014-12-15 |
ISBN-10 |
: 9781493921812 |
ISBN-13 |
: 1493921819 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Introduction to Nonlinear Dispersive Equations by : Felipe Linares
This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introduction to Nonlinear Dispersive Equations builds upon the success of the first edition by the addition of updated material on the main topics, an expanded bibliography, and new exercises. Assuming only basic knowledge of complex analysis and integration theory, this book will enable graduate students and researchers to enter this actively developing field.
Author |
: Sören Bartels |
Publisher |
: Springer |
Total Pages |
: 394 |
Release |
: 2015-01-19 |
ISBN-10 |
: 9783319137971 |
ISBN-13 |
: 3319137972 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Numerical Methods for Nonlinear Partial Differential Equations by : Sören Bartels
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
Author |
: Guido Schneider |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 593 |
Release |
: 2017-10-26 |
ISBN-10 |
: 9781470436131 |
ISBN-13 |
: 1470436132 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Nonlinear PDEs by : Guido Schneider
This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced models. For many models, a mathematically rigorous justification by approximation results is given. The parts of the book are kept as self-contained as possible. The book is suitable for self-study, and there are various possibilities to build one- or two-semester courses from the book.
Author |
: Lawrence C. Evans |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 98 |
Release |
: 1990 |
ISBN-10 |
: 9780821807248 |
ISBN-13 |
: 0821807242 |
Rating |
: 4/5 (48 Downloads) |
Synopsis Weak Convergence Methods for Nonlinear Partial Differential Equations by : Lawrence C. Evans
"Expository lectures from the the CBMS Regional Conference held at Loyola University of Chicago, June 27-July 1, 1988."--T.p. verso.
Author |
: Walter A. Strauss |
Publisher |
: John Wiley & Sons |
Total Pages |
: 467 |
Release |
: 2007-12-21 |
ISBN-10 |
: 9780470054567 |
ISBN-13 |
: 0470054565 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Partial Differential Equations by : Walter A. Strauss
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.