Bayesian Survival Analysis

Bayesian Survival Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 494
Release :
ISBN-10 : 9781475734478
ISBN-13 : 1475734476
Rating : 4/5 (78 Downloads)

Synopsis Bayesian Survival Analysis by : Joseph G. Ibrahim

Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. It presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all from the health sciences, including cancer, AIDS, and the environment.

Bayesian Survival Analysis

Bayesian Survival Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 504
Release :
ISBN-10 : 0387952772
ISBN-13 : 9780387952772
Rating : 4/5 (72 Downloads)

Synopsis Bayesian Survival Analysis by : Joseph G. Ibrahim

Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. It presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all from the health sciences, including cancer, AIDS, and the environment.

Bayesian Survival Analysis

Bayesian Survival Analysis
Author :
Publisher :
Total Pages : 496
Release :
ISBN-10 : 1475734484
ISBN-13 : 9781475734485
Rating : 4/5 (84 Downloads)

Synopsis Bayesian Survival Analysis by : Joseph G. Ibrahim

Handbook of Survival Analysis

Handbook of Survival Analysis
Author :
Publisher : CRC Press
Total Pages : 635
Release :
ISBN-10 : 9781466555679
ISBN-13 : 146655567X
Rating : 4/5 (79 Downloads)

Synopsis Handbook of Survival Analysis by : John P. Klein

Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians

Bayesian inference with INLA

Bayesian inference with INLA
Author :
Publisher : CRC Press
Total Pages : 330
Release :
ISBN-10 : 9781351707206
ISBN-13 : 1351707205
Rating : 4/5 (06 Downloads)

Synopsis Bayesian inference with INLA by : Virgilio Gomez-Rubio

The integrated nested Laplace approximation (INLA) is a recent computational method that can fit Bayesian models in a fraction of the time required by typical Markov chain Monte Carlo (MCMC) methods. INLA focuses on marginal inference on the model parameters of latent Gaussian Markov random fields models and exploits conditional independence properties in the model for computational speed. Bayesian Inference with INLA provides a description of INLA and its associated R package for model fitting. This book describes the underlying methodology as well as how to fit a wide range of models with R. Topics covered include generalized linear mixed-effects models, multilevel models, spatial and spatio-temporal models, smoothing methods, survival analysis, imputation of missing values, and mixture models. Advanced features of the INLA package and how to extend the number of priors and latent models available in the package are discussed. All examples in the book are fully reproducible and datasets and R code are available from the book website. This book will be helpful to researchers from different areas with some background in Bayesian inference that want to apply the INLA method in their work. The examples cover topics on biostatistics, econometrics, education, environmental science, epidemiology, public health, and the social sciences.

Survival Analysis: State of the Art

Survival Analysis: State of the Art
Author :
Publisher : Springer Science & Business Media
Total Pages : 446
Release :
ISBN-10 : 9789401579834
ISBN-13 : 9401579830
Rating : 4/5 (34 Downloads)

Synopsis Survival Analysis: State of the Art by : John P. Klein

Survival analysis is a highly active area of research with applications spanning the physical, engineering, biological, and social sciences. In addition to statisticians and biostatisticians, researchers in this area include epidemiologists, reliability engineers, demographers and economists. The economists survival analysis by the name of duration analysis and the analysis of transition data. We attempted to bring together leading researchers, with a common interest in developing methodology in survival analysis, at the NATO Advanced Research Workshop. The research works collected in this volume are based on the presentations at the Workshop. Analysis of survival experiments is complicated by issues of censoring, where only partial observation of an individual's life length is available and left truncation, where individuals enter the study group if their life lengths exceed a given threshold time. Application of the theory of counting processes to survival analysis, as developed by the Scandinavian School, has allowed for substantial advances in the procedures for analyzing such experiments. The increased use of computer intensive solutions to inference problems in survival analysis~ in both the classical and Bayesian settings, is also evident throughout the volume. Several areas of research have received special attention in the volume.

Survival and Event History Analysis

Survival and Event History Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 550
Release :
ISBN-10 : 9780387685601
ISBN-13 : 038768560X
Rating : 4/5 (01 Downloads)

Synopsis Survival and Event History Analysis by : Odd Aalen

The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty; they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics.

Bayesian Approaches to Clinical Trials and Health-Care Evaluation

Bayesian Approaches to Clinical Trials and Health-Care Evaluation
Author :
Publisher : John Wiley & Sons
Total Pages : 416
Release :
ISBN-10 : 0471499757
ISBN-13 : 9780471499756
Rating : 4/5 (57 Downloads)

Synopsis Bayesian Approaches to Clinical Trials and Health-Care Evaluation by : David J. Spiegelhalter

READ ALL ABOUT IT! David Spiegelhalter has recently joined the ranks of Isaac Newton, Charles Darwin and Stephen Hawking by becoming a fellow of the Royal Society. Originating from the Medical Research Council’s biostatistics unit, David has played a leading role in the Bristol heart surgery and Harold Shipman inquiries. Order a copy of this author’s comprehensive text TODAY! The Bayesian approach involves synthesising data and judgement in order to reach conclusions about unknown quantities and make predictions. Bayesian methods have become increasingly popular in recent years, notably in medical research, and although there are a number of books on Bayesian analysis, few cover clinical trials and biostatistical applications in any detail. Bayesian Approaches to Clinical Trials and Health-Care Evaluation provides a valuable overview of this rapidly evolving field, including basic Bayesian ideas, prior distributions, clinical trials, observational studies, evidence synthesis and cost-effectiveness analysis. Covers a broad array of essential topics, building from the basics to more advanced techniques. Illustrated throughout by detailed case studies and worked examples Includes exercises in all chapters Accessible to anyone with a basic knowledge of statistics Authors are at the forefront of research into Bayesian methods in medical research Accompanied by a Web site featuring data sets and worked examples using Excel and WinBUGS - the most widely used Bayesian modelling package Bayesian Approaches to Clinical Trials and Health-Care Evaluation is suitable for students and researchers in medical statistics, statisticians in the pharmaceutical industry, and anyone involved in conducting clinical trials and assessment of health-care technology.

Doing Bayesian Data Analysis

Doing Bayesian Data Analysis
Author :
Publisher : Academic Press
Total Pages : 772
Release :
ISBN-10 : 9780124059160
ISBN-13 : 0124059163
Rating : 4/5 (60 Downloads)

Synopsis Doing Bayesian Data Analysis by : John Kruschke

Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the popular and free software R and WinBugs, as well as new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. The book is divided into three parts and begins with the basics: models, probability, Bayes' rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment. This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business. - Accessible, including the basics of essential concepts of probability and random sampling - Examples with R programming language and JAGS software - Comprehensive coverage of all scenarios addressed by non-Bayesian textbooks: t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis) - Coverage of experiment planning - R and JAGS computer programming code on website - Exercises have explicit purposes and guidelines for accomplishment - Provides step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs

Survival Analysis

Survival Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 508
Release :
ISBN-10 : 9781475727289
ISBN-13 : 1475727283
Rating : 4/5 (89 Downloads)

Synopsis Survival Analysis by : John P. Klein

Making complex methods more accessible to applied researchers without an advanced mathematical background, the authors present the essence of new techniques available, as well as classical techniques, and apply them to data. Practical suggestions for implementing the various methods are set off in a series of practical notes at the end of each section, while technical details of the derivation of the techniques are sketched in the technical notes. This book will thus be useful for investigators who need to analyse censored or truncated life time data, and as a textbook for a graduate course in survival analysis, the only prerequisite being a standard course in statistical methodology.