Bayesian Inference With Inla
Download Bayesian Inference With Inla full books in PDF, epub, and Kindle. Read online free Bayesian Inference With Inla ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Virgilio Gomez-Rubio |
Publisher |
: CRC Press |
Total Pages |
: 330 |
Release |
: 2020-02-20 |
ISBN-10 |
: 9781351707206 |
ISBN-13 |
: 1351707205 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Bayesian inference with INLA by : Virgilio Gomez-Rubio
The integrated nested Laplace approximation (INLA) is a recent computational method that can fit Bayesian models in a fraction of the time required by typical Markov chain Monte Carlo (MCMC) methods. INLA focuses on marginal inference on the model parameters of latent Gaussian Markov random fields models and exploits conditional independence properties in the model for computational speed. Bayesian Inference with INLA provides a description of INLA and its associated R package for model fitting. This book describes the underlying methodology as well as how to fit a wide range of models with R. Topics covered include generalized linear mixed-effects models, multilevel models, spatial and spatio-temporal models, smoothing methods, survival analysis, imputation of missing values, and mixture models. Advanced features of the INLA package and how to extend the number of priors and latent models available in the package are discussed. All examples in the book are fully reproducible and datasets and R code are available from the book website. This book will be helpful to researchers from different areas with some background in Bayesian inference that want to apply the INLA method in their work. The examples cover topics on biostatistics, econometrics, education, environmental science, epidemiology, public health, and the social sciences.
Author |
: Xiaofeng Wang |
Publisher |
: CRC Press |
Total Pages |
: 304 |
Release |
: 2018-01-29 |
ISBN-10 |
: 9781351165747 |
ISBN-13 |
: 1351165747 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Bayesian Regression Modeling with INLA by : Xiaofeng Wang
INLA stands for Integrated Nested Laplace Approximations, which is a new method for fitting a broad class of Bayesian regression models. No samples of the posterior marginal distributions need to be drawn using INLA, so it is a computationally convenient alternative to Markov chain Monte Carlo (MCMC), the standard tool for Bayesian inference. Bayesian Regression Modeling with INLA covers a wide range of modern regression models and focuses on the INLA technique for building Bayesian models using real-world data and assessing their validity. A key theme throughout the book is that it makes sense to demonstrate the interplay of theory and practice with reproducible studies. Complete R commands are provided for each example, and a supporting website holds all of the data described in the book. An R package including the data and additional functions in the book is available to download. The book is aimed at readers who have a basic knowledge of statistical theory and Bayesian methodology. It gets readers up to date on the latest in Bayesian inference using INLA and prepares them for sophisticated, real-world work. Xiaofeng Wang is Professor of Medicine and Biostatistics at the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University and a Full Staff in the Department of Quantitative Health Sciences at Cleveland Clinic. Yu Ryan Yue is Associate Professor of Statistics in the Paul H. Chook Department of Information Systems and Statistics at Baruch College, The City University of New York. Julian J. Faraway is Professor of Statistics in the Department of Mathematical Sciences at the University of Bath.
Author |
: Marta Blangiardo |
Publisher |
: John Wiley & Sons |
Total Pages |
: 322 |
Release |
: 2015-06-02 |
ISBN-10 |
: 9781118326558 |
ISBN-13 |
: 1118326555 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Spatial and Spatio-temporal Bayesian Models with R - INLA by : Marta Blangiardo
Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations
Author |
: Elias T. Krainski |
Publisher |
: CRC Press |
Total Pages |
: 284 |
Release |
: 2018-12-07 |
ISBN-10 |
: 9780429629853 |
ISBN-13 |
: 0429629850 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA by : Elias T. Krainski
Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.
Author |
: Paula Moraga |
Publisher |
: CRC Press |
Total Pages |
: 216 |
Release |
: 2019-11-26 |
ISBN-10 |
: 9781000732153 |
ISBN-13 |
: 1000732150 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Geospatial Health Data by : Paula Moraga
Geospatial health data are essential to inform public health and policy. These data can be used to quantify disease burden, understand geographic and temporal patterns, identify risk factors, and measure inequalities. Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny describes spatial and spatio-temporal statistical methods and visualization techniques to analyze georeferenced health data in R. The book covers the following topics: Manipulate and transform point, areal, and raster data, Bayesian hierarchical models for disease mapping using areal and geostatistical data, Fit and interpret spatial and spatio-temporal models with the Integrated Nested Laplace Approximations (INLA) and the Stochastic Partial Differential Equation (SPDE) approaches, Create interactive and static visualizations such as disease maps and time plots, Reproducible R Markdown reports, interactive dashboards, and Shiny web applications that facilitate the communication of insights to collaborators and policy makers. The book features fully reproducible examples of several disease and environmental applications using real-world data such as malaria in The Gambia, cancer in Scotland and USA, and air pollution in Spain. Examples in the book focus on health applications, but the approaches covered are also applicable to other fields that use georeferenced data including epidemiology, ecology, demography or criminology. The book provides clear descriptions of the R code for data importing, manipulation, modeling and visualization, as well as the interpretation of the results. This ensures contents are fully reproducible and accessible for students, researchers and practitioners.
Author |
: Pietro Mantovan |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 170 |
Release |
: 2011-01-27 |
ISBN-10 |
: 9788847013865 |
ISBN-13 |
: 8847013860 |
Rating |
: 4/5 (65 Downloads) |
Synopsis Complex Data Modeling and Computationally Intensive Statistical Methods by : Pietro Mantovan
Selected from the conference "S.Co.2009: Complex Data Modeling and Computationally Intensive Methods for Estimation and Prediction," these 20 papers cover the latest in statistical methods and computational techniques for complex and high dimensional datasets.
Author |
: M. Antónia Amaral Turkman |
Publisher |
: Cambridge University Press |
Total Pages |
: 256 |
Release |
: 2019-02-28 |
ISBN-10 |
: 9781108481038 |
ISBN-13 |
: 1108481035 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Computational Bayesian Statistics by : M. Antónia Amaral Turkman
This integrated introduction to fundamentals, computation, and software is your key to understanding and using advanced Bayesian methods.
Author |
: Sujit Sahu |
Publisher |
: CRC Press |
Total Pages |
: 385 |
Release |
: 2022-02-23 |
ISBN-10 |
: 9781000543698 |
ISBN-13 |
: 1000543692 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Bayesian Modeling of Spatio-Temporal Data with R by : Sujit Sahu
Applied sciences, both physical and social, such as atmospheric, biological, climate, demographic, economic, ecological, environmental, oceanic and political, routinely gather large volumes of spatial and spatio-temporal data in order to make wide ranging inference and prediction. Ideally such inferential tasks should be approached through modelling, which aids in estimation of uncertainties in all conclusions drawn from such data. Unified Bayesian modelling, implemented through user friendly software packages, provides a crucial key to unlocking the full power of these methods for solving challenging practical problems. Key features of the book: • Accessible detailed discussion of a majority of all aspects of Bayesian methods and computations with worked examples, numerical illustrations and exercises • A spatial statistics jargon buster chapter that enables the reader to build up a vocabulary without getting clouded in modeling and technicalities • Computation and modeling illustrations are provided with the help of the dedicated R package bmstdr, allowing the reader to use well-known packages and platforms, such as rstan, INLA, spBayes, spTimer, spTDyn, CARBayes, CARBayesST, etc • Included are R code notes detailing the algorithms used to produce all the tables and figures, with data and code available via an online supplement • Two dedicated chapters discuss practical examples of spatio-temporal modeling of point referenced and areal unit data • Throughout, the emphasis has been on validating models by splitting data into test and training sets following on the philosophy of machine learning and data science This book is designed to make spatio-temporal modeling and analysis accessible and understandable to a wide audience of students and researchers, from mathematicians and statisticians to practitioners in the applied sciences. It presents most of the modeling with the help of R commands written in a purposefully developed R package to facilitate spatio-temporal modeling. It does not compromise on rigour, as it presents the underlying theories of Bayesian inference and computation in standalone chapters, which would be appeal those interested in the theoretical details. By avoiding hard core mathematics and calculus, this book aims to be a bridge that removes the statistical knowledge gap from among the applied scientists.
Author |
: Havard Rue |
Publisher |
: CRC Press |
Total Pages |
: 280 |
Release |
: 2005-02-18 |
ISBN-10 |
: 9780203492024 |
ISBN-13 |
: 0203492021 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Gaussian Markov Random Fields by : Havard Rue
Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studie
Author |
: Thomas Kneib |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 486 |
Release |
: 2010-01-12 |
ISBN-10 |
: 9783790824131 |
ISBN-13 |
: 3790824135 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Statistical Modelling and Regression Structures by : Thomas Kneib
The contributions collected in this book have been written by well-known statisticians to acknowledge Ludwig Fahrmeir's far-reaching impact on Statistics as a science, while celebrating his 65th birthday. The contributions cover broad areas of contemporary statistical model building, including semiparametric and geoadditive regression, Bayesian inference in complex regression models, time series modelling, statistical regularization, graphical models and stochastic volatility models.