Arithmetic Geometry Number Theory And Computation
Download Arithmetic Geometry Number Theory And Computation full books in PDF, epub, and Kindle. Read online free Arithmetic Geometry Number Theory And Computation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: M.E. Pohst |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 108 |
Release |
: 1993-09 |
ISBN-10 |
: 3764329130 |
ISBN-13 |
: 9783764329136 |
Rating |
: 4/5 (30 Downloads) |
Synopsis Computational Algebraic Number Theory by : M.E. Pohst
Computational algebraic number theory has been attracting broad interest in the last few years due to its potential applications in coding theory and cryptography. For this reason, the Deutsche Mathematiker-Vereinigung initiated an introductory graduate seminar on this topic in Dusseldorf. The lectures given there by the author served as the basis for this book which allows fast access to the state of the art in this area. Special emphasis has been placed on practical algorithms - all developed in the last five years - for the computation of integral bases, the unit group and the class group of arbitrary algebraic number fields. The workshops organized by the Gesselschaft fur mathematische Forschung in cooperation with the Deutsche Mathematiker-Vereinigung (German Mathematics Society) are intended to help, in particular, students and younger mathematicians, to obtain an introduction to fields of current research. Through the means of these well-organized seminars, scientists from other fields can also be introduced to new mathematical ideas. The publication of these workshops in the series DMV SEMINAR will make the material available to an even larger audience.
Author |
: Jennifer S. Balakrishnan |
Publisher |
: Springer Nature |
Total Pages |
: 587 |
Release |
: 2022-03-15 |
ISBN-10 |
: 9783030809140 |
ISBN-13 |
: 3030809145 |
Rating |
: 4/5 (40 Downloads) |
Synopsis Arithmetic Geometry, Number Theory, and Computation by : Jennifer S. Balakrishnan
This volume contains articles related to the work of the Simons Collaboration “Arithmetic Geometry, Number Theory, and Computation.” The papers present mathematical results and algorithms necessary for the development of large-scale databases like the L-functions and Modular Forms Database (LMFDB). The authors aim to develop systematic tools for analyzing Diophantine properties of curves, surfaces, and abelian varieties over number fields and finite fields. The articles also explore examples important for future research. Specific topics include● algebraic varieties over finite fields● the Chabauty-Coleman method● modular forms● rational points on curves of small genus● S-unit equations and integral points.
Author |
: Claus Fieker |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 526 |
Release |
: 2002-06-26 |
ISBN-10 |
: 9783540438632 |
ISBN-13 |
: 3540438637 |
Rating |
: 4/5 (32 Downloads) |
Synopsis Algorithmic Number Theory by : Claus Fieker
Self-organized criticality (SOC) has become a magic word in various scientific disciplines; it provides a framework for understanding complexity and scale invariance in systems showing irregular fluctuations. In the first 10 years after Per Bak and his co-workers presented their seminal idea, more than 2000 papers on this topic appeared. Seismology has been a field in earth sciences where the SOC concept has already deepened the understanding, but there seem to be much more examples in earth sciences where applying the SOC concept may be fruitful. After introducing the reader into the basics of fractals, chaos and SOC, the book presents established and new applications of SOC in earth sciences, namely earthquakes, forest fires, landslides and drainage networks.
Author |
: Harold M. Edwards |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 228 |
Release |
: 2008 |
ISBN-10 |
: 0821844393 |
ISBN-13 |
: 9780821844397 |
Rating |
: 4/5 (93 Downloads) |
Synopsis Higher Arithmetic by : Harold M. Edwards
Among the topics featured in this textbook are: congruences; the fundamental theorem of arithmetic; exponentiation and orders; primality testing; the RSA cipher system; polynomials; modules of hypernumbers; signatures of equivalence classes; and the theory of binary quadratic forms. The book contains exercises with answers.
Author |
: Avi Wigderson |
Publisher |
: Princeton University Press |
Total Pages |
: 434 |
Release |
: 2019-10-29 |
ISBN-10 |
: 9780691189130 |
ISBN-13 |
: 0691189137 |
Rating |
: 4/5 (30 Downloads) |
Synopsis Mathematics and Computation by : Avi Wigderson
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Author |
: Ellen E. Eischen |
Publisher |
: Springer |
Total Pages |
: 351 |
Release |
: 2016-09-26 |
ISBN-10 |
: 9783319309767 |
ISBN-13 |
: 3319309765 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Directions in Number Theory by : Ellen E. Eischen
Exploring the interplay between deep theory and intricate computation, this volume is a compilation of research and survey papers in number theory, written by members of the Women In Numbers (WIN) network, principally by the collaborative research groups formed at Women In Numbers 3, a conference at the Banff International Research Station in Banff, Alberta, on April 21-25, 2014. The papers span a wide range of research areas: arithmetic geometry; analytic number theory; algebraic number theory; and applications to coding and cryptography. The WIN conference series began in 2008, with the aim of strengthening the research careers of female number theorists. The series introduced a novel research-mentorship model: women at all career stages, from graduate students to senior members of the community, joined forces to work in focused research groups on cutting-edge projects designed and led by experienced researchers. The goals for Women In Numbers 3 were to establish ambitious new collaborations between women in number theory, to train junior participants about topics of current importance, and to continue to build a vibrant community of women in number theory. Forty-two women attended the WIN3 workshop, including 15 senior and mid-level faculty, 15 junior faculty and postdocs, and 12 graduate students.
Author |
: Gary Cornell |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 592 |
Release |
: 2013-12-01 |
ISBN-10 |
: 9781461219743 |
ISBN-13 |
: 1461219744 |
Rating |
: 4/5 (43 Downloads) |
Synopsis Modular Forms and Fermat’s Last Theorem by : Gary Cornell
This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.
Author |
: Diane L. Herrmann |
Publisher |
: CRC Press |
Total Pages |
: 446 |
Release |
: 2012-10-18 |
ISBN-10 |
: 9781466554641 |
ISBN-13 |
: 1466554649 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Number, Shape, & Symmetry by : Diane L. Herrmann
Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.
Author |
: William Stein |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 173 |
Release |
: 2008-10-28 |
ISBN-10 |
: 9780387855257 |
ISBN-13 |
: 0387855254 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Elementary Number Theory: Primes, Congruences, and Secrets by : William Stein
This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.
Author |
: Dino Lorenzini |
Publisher |
: American Mathematical Society |
Total Pages |
: 397 |
Release |
: 2021-12-23 |
ISBN-10 |
: 9781470467258 |
ISBN-13 |
: 1470467259 |
Rating |
: 4/5 (58 Downloads) |
Synopsis An Invitation to Arithmetic Geometry by : Dino Lorenzini
Extremely carefully written, masterfully thought out, and skillfully arranged introduction … to the arithmetic of algebraic curves, on the one hand, and to the algebro-geometric aspects of number theory, on the other hand. … an excellent guide for beginners in arithmetic geometry, just as an interesting reference and methodical inspiration for teachers of the subject … a highly welcome addition to the existing literature. —Zentralblatt MATH The interaction between number theory and algebraic geometry has been especially fruitful. In this volume, the author gives a unified presentation of some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometry, and for the first time in a book at this level, brings out the deep analogies between them. The geometric viewpoint is stressed throughout the book. Extensive examples are given to illustrate each new concept, and many interesting exercises are given at the end of each chapter. Most of the important results in the one-dimensional case are proved, including Bombieri's proof of the Riemann Hypothesis for curves over a finite field. While the book is not intended to be an introduction to schemes, the author indicates how many of the geometric notions introduced in the book relate to schemes, which will aid the reader who goes to the next level of this rich subject.