Arithmetic Geometry And Automorphic Forms
Download Arithmetic Geometry And Automorphic Forms full books in PDF, epub, and Kindle. Read online free Arithmetic Geometry And Automorphic Forms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: James W. Cogdell |
Publisher |
: International Pressof Boston Incorporated |
Total Pages |
: 557 |
Release |
: 2011 |
ISBN-10 |
: 1571462295 |
ISBN-13 |
: 9781571462299 |
Rating |
: 4/5 (95 Downloads) |
Synopsis Arithmetic Geometry and Automorphic Forms by : James W. Cogdell
Author |
: Anton Deitmar |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 255 |
Release |
: 2012-08-29 |
ISBN-10 |
: 9781447144359 |
ISBN-13 |
: 144714435X |
Rating |
: 4/5 (59 Downloads) |
Synopsis Automorphic Forms by : Anton Deitmar
Automorphic forms are an important complex analytic tool in number theory and modern arithmetic geometry. They played for example a vital role in Andrew Wiles's proof of Fermat's Last Theorem. This text provides a concise introduction to the world of automorphic forms using two approaches: the classic elementary theory and the modern point of view of adeles and representation theory. The reader will learn the important aims and results of the theory by focussing on its essential aspects and restricting it to the 'base field' of rational numbers. Students interested for example in arithmetic geometry or number theory will find that this book provides an optimal and easily accessible introduction into this topic.
Author |
: Werner Müller |
Publisher |
: Springer |
Total Pages |
: 581 |
Release |
: 2016-09-20 |
ISBN-10 |
: 9783319414249 |
ISBN-13 |
: 3319414240 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Families of Automorphic Forms and the Trace Formula by : Werner Müller
Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory. Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.
Author |
: Walter L. Baily Jr. |
Publisher |
: Princeton University Press |
Total Pages |
: 279 |
Release |
: 2015-03-08 |
ISBN-10 |
: 9781400867158 |
ISBN-13 |
: 1400867150 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Introductory Lectures on Automorphic Forms by : Walter L. Baily Jr.
Intended as an introductory guide, this work takes for its subject complex, analytic, automorphic forms and functions on (a domain equivalent to) a bounded domain in a finite-dimensional, complex, vector space, usually denoted Cn). Part I, essentially elementary, deals with complex analytic automorphic forms on a bounded domain; it presents H. Cartan's proof of the existence of the projective imbedding of the compact quotient of such a domain by a discrete group. Part II treats the construction and properties of automorphic forms with respect to an arithmetic group acting on a bounded symmetric domain; this part is highly technical, and based largely on relevant results in functional analysis due to Godement and Harish-Chandra. In Part III, Professor Baily extends the discussion to include some special topics, specifically, the arithmetic propertics of Eisenstein series and their connection with the arithmetic theory of quadratic forms. Unlike classical works on the subject, this book deals with more than one variable, and it differs notably in its treatment of analysis on the group of automorphisms of the domain. It is concerned with the case of complex analytic automorphic forms because of their connection with algebraic geometry, and so is distinct from other modern treatises that deal with automorphic forms on a semi-simple Lie group. Having had its inception as graduate- level lectures, the book assumes some knowledge of complex function theory and algebra, for the serious reader is expected to supply certain details for himself, especially in such related areas as functional analysis and algebraic groups. Originally published in 1973. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Author |
: Gary Cornell |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 592 |
Release |
: 2013-12-01 |
ISBN-10 |
: 9781461219743 |
ISBN-13 |
: 1461219744 |
Rating |
: 4/5 (43 Downloads) |
Synopsis Modular Forms and Fermat’s Last Theorem by : Gary Cornell
This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.
Author |
: Gorō Shimura |
Publisher |
: Princeton University Press |
Total Pages |
: 292 |
Release |
: 1971-08-21 |
ISBN-10 |
: 0691080925 |
ISBN-13 |
: 9780691080925 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Introduction to the Arithmetic Theory of Automorphic Functions by : Gorō Shimura
The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.
Author |
: Fred Diamond |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 462 |
Release |
: 2006-03-30 |
ISBN-10 |
: 9780387272269 |
ISBN-13 |
: 0387272267 |
Rating |
: 4/5 (69 Downloads) |
Synopsis A First Course in Modular Forms by : Fred Diamond
This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.
Author |
: D. Bump |
Publisher |
: Springer |
Total Pages |
: 196 |
Release |
: 2006-12-08 |
ISBN-10 |
: 9783540390558 |
ISBN-13 |
: 3540390553 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Automorphic Forms on GL (3,TR) by : D. Bump
Author |
: Lizhen Ji |
Publisher |
: International Press of Boston |
Total Pages |
: 0 |
Release |
: 2010 |
ISBN-10 |
: 1571461418 |
ISBN-13 |
: 9781571461414 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Automorphic Forms and the Langlands Program by : Lizhen Ji
Consists of expanded lecture notes from a 2007 international conference in Guangzhou, China, at which several leading experts in number theory presented introductions to, and surveys of, many aspects of automorphic forms and the Langlands program.
Author |
: Haruzo Hida |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 414 |
Release |
: 2004-05-10 |
ISBN-10 |
: 0387207112 |
ISBN-13 |
: 9780387207117 |
Rating |
: 4/5 (12 Downloads) |
Synopsis p-Adic Automorphic Forms on Shimura Varieties by : Haruzo Hida
This book covers the following three topics in a manner accessible to graduate students who have an understanding of algebraic number theory and scheme theoretic algebraic geometry: 1. An elementary construction of Shimura varieties as moduli of abelian schemes. 2. p-adic deformation theory of automorphic forms on Shimura varieties. 3. A simple proof of irreducibility of the generalized Igusa tower over the Shimura variety. The book starts with a detailed study of elliptic and Hilbert modular forms and reaches to the forefront of research of Shimura varieties associated with general classical groups. The method of constructing p-adic analytic families and the proof of irreducibility was recently discovered by the author. The area covered in this book is now a focal point of research worldwide with many far-reaching applications that have led to solutions of longstanding problems and conjectures. Specifically, the use of p-adic elliptic and Hilbert modular forms have proven essential in recent breakthroughs in number theory (for example, the proof of Fermat's Last Theorem and the Shimura-Taniyama conjecture by A. Wiles and others). Haruzo Hida is Professor of Mathematics at University of California, Los Angeles. His previous books include Modular Forms and Galois Cohomology (Cambridge University Press 2000) and Geometric Modular Forms and Elliptic Curves (World Scientific Publishing Company 2000).