Introductory Lectures on Automorphic Forms

Introductory Lectures on Automorphic Forms
Author :
Publisher : Princeton University Press
Total Pages : 279
Release :
ISBN-10 : 9781400867158
ISBN-13 : 1400867150
Rating : 4/5 (58 Downloads)

Synopsis Introductory Lectures on Automorphic Forms by : Walter L. Baily Jr.

Intended as an introductory guide, this work takes for its subject complex, analytic, automorphic forms and functions on (a domain equivalent to) a bounded domain in a finite-dimensional, complex, vector space, usually denoted Cn). Part I, essentially elementary, deals with complex analytic automorphic forms on a bounded domain; it presents H. Cartan's proof of the existence of the projective imbedding of the compact quotient of such a domain by a discrete group. Part II treats the construction and properties of automorphic forms with respect to an arithmetic group acting on a bounded symmetric domain; this part is highly technical, and based largely on relevant results in functional analysis due to Godement and Harish-Chandra. In Part III, Professor Baily extends the discussion to include some special topics, specifically, the arithmetic propertics of Eisenstein series and their connection with the arithmetic theory of quadratic forms. Unlike classical works on the subject, this book deals with more than one variable, and it differs notably in its treatment of analysis on the group of automorphisms of the domain. It is concerned with the case of complex analytic automorphic forms because of their connection with algebraic geometry, and so is distinct from other modern treatises that deal with automorphic forms on a semi-simple Lie group. Having had its inception as graduate- level lectures, the book assumes some knowledge of complex function theory and algebra, for the serious reader is expected to supply certain details for himself, especially in such related areas as functional analysis and algebraic groups. Originally published in 1973. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Introductory Lectures on Siegel Modular Forms

Introductory Lectures on Siegel Modular Forms
Author :
Publisher : Cambridge University Press
Total Pages : 0
Release :
ISBN-10 : 9780521350525
ISBN-13 : 0521350522
Rating : 4/5 (25 Downloads)

Synopsis Introductory Lectures on Siegel Modular Forms by : Helmut Klingen

From their inception, Siegel modular forms have been studied extensively because of their significance in both automorphic functions in several complex variables and number theory. The comprehensive theory of automorphic forms to subgroups of algebraic groups and the arithmetical theory of modular forms illustrate these two aspects in an illuminating manner. The author's aim is to present a straightforward and easily accessible survey of the main ideas of the theory at an elementary level, providing a sound basis from which the reader can study advanced works and undertake original research. This book is based on lectures given by the author for a number of years and is intended for a one-semester graduate course, though it can also be used profitably for self-study. The only prerequisites are a basic knowledge of algebra, number theory and complex analysis.

Encyclopaedia of Mathematics (set)

Encyclopaedia of Mathematics (set)
Author :
Publisher : Springer Science & Business Media
Total Pages : 982
Release :
ISBN-10 : 1556080107
ISBN-13 : 9781556080104
Rating : 4/5 (07 Downloads)

Synopsis Encyclopaedia of Mathematics (set) by : Michiel Hazewinkel

The Encyclopaedia of Mathematics is the most up-to-date, authoritative and comprehensive English-language work of reference in mathematics which exists today. With over 7,000 articles from `A-integral' to `Zygmund Class of Functions', supplemented with a wealth of complementary information, and an index volume providing thorough cross-referencing of entries of related interest, the Encyclopaedia of Mathematics offers an immediate source of reference to mathematical definitions, concepts, explanations, surveys, examples, terminology and methods. The depth and breadth of content and the straightforward, careful presentation of the information, with the emphasis on accessibility, makes the Encyclopaedia of Mathematics an immensely useful tool for all mathematicians and other scientists who use, or are confronted by, mathematics in their work. The Enclyclopaedia of Mathematics provides, without doubt, a reference source of mathematical knowledge which is unsurpassed in value and usefulness. It can be highly recommended for use in libraries of universities, research institutes, colleges and even schools.

Introduction to the Arithmetic Theory of Automorphic Functions

Introduction to the Arithmetic Theory of Automorphic Functions
Author :
Publisher : Princeton University Press
Total Pages : 292
Release :
ISBN-10 : 0691080925
ISBN-13 : 9780691080925
Rating : 4/5 (25 Downloads)

Synopsis Introduction to the Arithmetic Theory of Automorphic Functions by : Gorō Shimura

The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.

Automorphic Forms, Representations and $L$-Functions

Automorphic Forms, Representations and $L$-Functions
Author :
Publisher : American Mathematical Soc.
Total Pages : 394
Release :
ISBN-10 : 9780821814376
ISBN-13 : 0821814370
Rating : 4/5 (76 Downloads)

Synopsis Automorphic Forms, Representations and $L$-Functions by : Armand Borel

Part 2 contains sections on Automorphic representations and $L$-functions, Arithmetical algebraic geometry and $L$-functions

Introduction to Modular Forms

Introduction to Modular Forms
Author :
Publisher : Springer Science & Business Media
Total Pages : 267
Release :
ISBN-10 : 9783642514470
ISBN-13 : 3642514472
Rating : 4/5 (70 Downloads)

Synopsis Introduction to Modular Forms by : Serge Lang

From the reviews: "This book gives a thorough introduction to several theories that are fundamental to research on modular forms. Most of the material, despite its importance, had previously been unavailable in textbook form. Complete and readable proofs are given... In conclusion, this book is a welcome addition to the literature for the growing number of students and mathematicians in other fields who want to understand the recent developments in the theory of modular forms." #Mathematical Reviews# "This book will certainly be indispensable to all those wishing to get an up-to-date initiation to the theory of modular forms." #Publicationes Mathematicae#

Automorphic Forms on Adele Groups. (AM-83), Volume 83

Automorphic Forms on Adele Groups. (AM-83), Volume 83
Author :
Publisher : Princeton University Press
Total Pages : 280
Release :
ISBN-10 : 9781400881611
ISBN-13 : 1400881617
Rating : 4/5 (11 Downloads)

Synopsis Automorphic Forms on Adele Groups. (AM-83), Volume 83 by : Stephen S. Gelbart

This volume investigates the interplay between the classical theory of automorphic forms and the modern theory of representations of adele groups. Interpreting important recent contributions of Jacquet and Langlands, the author presents new and previously inaccessible results, and systematically develops explicit consequences and connections with the classical theory. The underlying theme is the decomposition of the regular representation of the adele group of GL(2). A detailed proof of the celebrated trace formula of Selberg is included, with a discussion of the possible range of applicability of this formula. Throughout the work the author emphasizes new examples and problems that remain open within the general theory. TABLE OF CONTENTS: 1. The Classical Theory 2. Automorphic Forms and the Decomposition of L2(PSL(2,R) 3. Automorphic Forms as Functions on the Adele Group of GL(2) 4. The Representations of GL(2) over Local and Global Fields 5. Cusp Forms and Representations of the Adele Group of GL(2) 6. Hecke Theory for GL(2) 7. The Construction of a Special Class of Automorphic Forms 8. Eisenstein Series and the Continuous Spectrum 9. The Trace Formula for GL(2) 10. Automorphic Forms on a Quaternion Algebr?

Automorphic Forms on GL (3,TR)

Automorphic Forms on GL (3,TR)
Author :
Publisher : Springer
Total Pages : 196
Release :
ISBN-10 : 9783540390558
ISBN-13 : 3540390553
Rating : 4/5 (58 Downloads)

Synopsis Automorphic Forms on GL (3,TR) by : D. Bump

p-Adic Automorphic Forms on Shimura Varieties

p-Adic Automorphic Forms on Shimura Varieties
Author :
Publisher : Springer Science & Business Media
Total Pages : 414
Release :
ISBN-10 : 0387207112
ISBN-13 : 9780387207117
Rating : 4/5 (12 Downloads)

Synopsis p-Adic Automorphic Forms on Shimura Varieties by : Haruzo Hida

This book covers the following three topics in a manner accessible to graduate students who have an understanding of algebraic number theory and scheme theoretic algebraic geometry: 1. An elementary construction of Shimura varieties as moduli of abelian schemes. 2. p-adic deformation theory of automorphic forms on Shimura varieties. 3. A simple proof of irreducibility of the generalized Igusa tower over the Shimura variety. The book starts with a detailed study of elliptic and Hilbert modular forms and reaches to the forefront of research of Shimura varieties associated with general classical groups. The method of constructing p-adic analytic families and the proof of irreducibility was recently discovered by the author. The area covered in this book is now a focal point of research worldwide with many far-reaching applications that have led to solutions of longstanding problems and conjectures. Specifically, the use of p-adic elliptic and Hilbert modular forms have proven essential in recent breakthroughs in number theory (for example, the proof of Fermat's Last Theorem and the Shimura-Taniyama conjecture by A. Wiles and others). Haruzo Hida is Professor of Mathematics at University of California, Los Angeles. His previous books include Modular Forms and Galois Cohomology (Cambridge University Press 2000) and Geometric Modular Forms and Elliptic Curves (World Scientific Publishing Company 2000).

Lectures on Automorphic L-functions

Lectures on Automorphic L-functions
Author :
Publisher : American Mathematical Soc.
Total Pages : 283
Release :
ISBN-10 : 0821848003
ISBN-13 : 9780821848005
Rating : 4/5 (03 Downloads)

Synopsis Lectures on Automorphic L-functions by : James W. Cogdell

This book provides a comprehensive account of the crucial role automorphic $L$-functions play in number theory and in the Langlands program, especially the Langlands functoriality conjecture. There has been a recent major development in the Langlands functoriality conjecture by the use of automorphic $L$-functions, namely, by combining converse theorems of Cogdell and Piatetski-Shapiro with the Langlands-Shahidi method. This book provides a step-by-step introduction to these developments and explains how the Langlands functoriality conjecture implies solutions to several outstanding conjectures in number theory, such as the Ramanujan conjecture, Sato-Tate conjecture, and Artin's conjecture. It would be ideal for an introductory course in the Langlands program. Titles in this series are co-published with The Fields Institute for Research in Mathematical Sciences (Toronto, Ontario, Canada). Table of Contents: James W.Cogdell, Lectures on $L$-functions, converse theorems, and functoriality for $GL_n$: Preface; Modular forms and their $L$-functions; Automorphic forms; Automorphic representations; Fourier expansions and multiplicity one theorems; Eulerian integral representations; Local $L$-functions: The non-Archimedean case; The unramified calculation; Local $L$-functions: The Archimedean case; Global $L$-functions; Converse theorems; Functoriality; Functoriality for the classical groups; Functoriality for the classical groups, II. Henry H.Kim, Automorphic $L$-functions: Introduction; Chevalley groups and their properties; Cuspidal representations; $L$-groups and automorphic $L$-functions; Induced representations; Eisenstein series and constant terms; $L$-functions in the constant terms; Meromorphic continuation of $L$-functions; Generic representations and their Whittaker models; Local coefficients and non-constant terms; Local Langlands correspondence; Local $L$-functions and functional equations; Normalization of intertwining operators; Holomorphy and bounded in vertical strips; Langlands functoriality conjecture; Converse theorem of Cogdell and Piatetski-Shapiro; Functoriality of the symmetric cube; Functoriality of the symmetric fourth; Bibliography. M.Ram Murty, Applications of symmetric power $L$-functions: Preface; The Sato-Tate conjecture; Maass wave forms; The Rankin-Selberg method; Oscillations of Fourier coefficients of cusp forms; Poincare series; Kloosterman sums and Selberg's conjecture; Refined estimates for Fourier coefficients of cusp forms; Twisting and averaging of $L$-series; The Kim-Sarnak theorem; Introduction to Artin $L$-functions; Zeros and poles of Artin $L$-functions; The Langlands-Tunnell theorem; Bibliography. This is a reprint of the 2004 original. (FIM/20.S)