Partial Differential Equations with Numerical Methods

Partial Differential Equations with Numerical Methods
Author :
Publisher : Springer Science & Business Media
Total Pages : 263
Release :
ISBN-10 : 9783540887058
ISBN-13 : 3540887059
Rating : 4/5 (58 Downloads)

Synopsis Partial Differential Equations with Numerical Methods by : Stig Larsson

The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.

Numerical Approximation of Partial Differential Equations

Numerical Approximation of Partial Differential Equations
Author :
Publisher : Springer
Total Pages : 541
Release :
ISBN-10 : 9783319323541
ISBN-13 : 3319323547
Rating : 4/5 (41 Downloads)

Synopsis Numerical Approximation of Partial Differential Equations by : Sören Bartels

Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular applications including incompressible elasticity, thin elastic objects, electromagnetism, and fluid mechanics are addressed. The book includes theoretical problems and practical projects for all chapters, and an introduction to the implementation of finite element methods.

Partial Differential Equations

Partial Differential Equations
Author :
Publisher : SIAM
Total Pages : 665
Release :
ISBN-10 : 9780898719352
ISBN-13 : 0898719356
Rating : 4/5 (52 Downloads)

Synopsis Partial Differential Equations by : Mark S. Gockenbach

A fresh, forward-looking undergraduate textbook that treats the finite element method and classical Fourier series method with equal emphasis.

Numerical Partial Differential Equations: Finite Difference Methods

Numerical Partial Differential Equations: Finite Difference Methods
Author :
Publisher : Springer Science & Business Media
Total Pages : 451
Release :
ISBN-10 : 9781489972781
ISBN-13 : 1489972781
Rating : 4/5 (81 Downloads)

Synopsis Numerical Partial Differential Equations: Finite Difference Methods by : J.W. Thomas

What makes this book stand out from the competition is that it is more computational. Once done with both volumes, readers will have the tools to attack a wider variety of problems than those worked out in the competitors' books. The author stresses the use of technology throughout the text, allowing students to utilize it as much as possible.

Numerical Partial Differential Equations

Numerical Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 573
Release :
ISBN-10 : 9781461205692
ISBN-13 : 1461205697
Rating : 4/5 (92 Downloads)

Synopsis Numerical Partial Differential Equations by : J.W. Thomas

Continuing the theme of the first, this second volume continues the study of the uses and techniques of numerical experimentation in the solution of PDEs. It includes topics such as initial-boundary-value problems, a complete survey of theory and numerical methods for conservation laws, and numerical schemes for elliptic PDEs. The author stresses the use of technology and graphics throughout for both illustration and analysis.

Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Numerical Methods for Elliptic and Parabolic Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 437
Release :
ISBN-10 : 9780387954493
ISBN-13 : 038795449X
Rating : 4/5 (93 Downloads)

Synopsis Numerical Methods for Elliptic and Parabolic Partial Differential Equations by : Peter Knabner

This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.

Applied Partial Differential Equations

Applied Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 193
Release :
ISBN-10 : 9781468405330
ISBN-13 : 1468405330
Rating : 4/5 (30 Downloads)

Synopsis Applied Partial Differential Equations by : J. David Logan

This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems;' The audience usually consists of stu dents in mathematics, engineering, and the physical sciences. The topics include derivations of some of the standard equations of mathemati cal physics (including the heat equation, the· wave equation, and the Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions or separation of variables, and methods based on Fourier and Laplace transforms. Prerequisites include calculus and a post-calculus differential equations course. There are several excellent texts for this course, so one can legitimately ask why one would wish to write another. A survey of the content of the existing titles shows that their scope is broad and the analysis detailed; and they often exceed five hundred pages in length. These books gen erally have enough material for two, three, or even four semesters. Yet, many undergraduate courses are one-semester courses. The author has often felt that students become a little uncomfortable when an instructor jumps around in a long volume searching for the right topics, or only par tially covers some topics; but they are secure in completely mastering a short, well-defined introduction. This text was written to proVide a brief, one-semester introduction to partial differential equations.

PETSc for Partial Differential Equations: Numerical Solutions in C and Python

PETSc for Partial Differential Equations: Numerical Solutions in C and Python
Author :
Publisher : SIAM
Total Pages : 407
Release :
ISBN-10 : 9781611976311
ISBN-13 : 1611976316
Rating : 4/5 (11 Downloads)

Synopsis PETSc for Partial Differential Equations: Numerical Solutions in C and Python by : Ed Bueler

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.

Applied Partial Differential Equations

Applied Partial Differential Equations
Author :
Publisher : Courier Corporation
Total Pages : 638
Release :
ISBN-10 : 9780486141879
ISBN-13 : 048614187X
Rating : 4/5 (79 Downloads)

Synopsis Applied Partial Differential Equations by : Paul DuChateau

Superb introduction devotes almost half its pages to numerical methods for solving partial differential equations, while the heart of the book focuses on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included, with solutions for many at end of book. For students with little background in linear algebra, a useful appendix covers that subject briefly.

Numerical Solution of Partial Differential Equations in Science and Engineering

Numerical Solution of Partial Differential Equations in Science and Engineering
Author :
Publisher : John Wiley & Sons
Total Pages : 677
Release :
ISBN-10 : 9781118031216
ISBN-13 : 1118031210
Rating : 4/5 (16 Downloads)

Synopsis Numerical Solution of Partial Differential Equations in Science and Engineering by : Leon Lapidus

From the reviews of Numerical Solution of PartialDifferential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, evenexhaustive, survey of the subject . . . [It] is unique in that itcovers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic)mode of presentation. Many different computational schemes aredescribed in great detail . . . Numerous practical examples andapplications are described from beginning to the end, often withcalculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages tolucid developments of the methods [for solving partial differentialequations] . . . the writing is very polished and I found it apleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen andEli L. Isaacson. A modern, practical look at numerical analysis,this book guides readers through a broad selection of numericalmethods, implementation, and basic theoretical results, with anemphasis on methods used in scientific computation involvingdifferential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan.Presenting an easily accessible treatment of mathematical methodsfor scientists and engineers, this acclaimed work covers fluidmechanics and calculus of variations as well as more modernmethods-dimensional analysis and scaling, nonlinear wavepropagation, bifurcation, and singular perturbation. 1996(0-471-16513-1) 496 pp.