Numerical Partial Differential Equations Finite Difference Methods
Download Numerical Partial Differential Equations Finite Difference Methods full books in PDF, epub, and Kindle. Read online free Numerical Partial Differential Equations Finite Difference Methods ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: J.W. Thomas |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 451 |
Release |
: 2013-12-01 |
ISBN-10 |
: 9781489972781 |
ISBN-13 |
: 1489972781 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Numerical Partial Differential Equations: Finite Difference Methods by : J.W. Thomas
What makes this book stand out from the competition is that it is more computational. Once done with both volumes, readers will have the tools to attack a wider variety of problems than those worked out in the competitors' books. The author stresses the use of technology throughout the text, allowing students to utilize it as much as possible.
Author |
: Randall J. LeVeque |
Publisher |
: SIAM |
Total Pages |
: 356 |
Release |
: 2007-01-01 |
ISBN-10 |
: 0898717833 |
ISBN-13 |
: 9780898717839 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Author |
: Sandip Mazumder |
Publisher |
: Academic Press |
Total Pages |
: 484 |
Release |
: 2015-12-01 |
ISBN-10 |
: 9780128035047 |
ISBN-13 |
: 0128035048 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Numerical Methods for Partial Differential Equations by : Sandip Mazumder
Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. - Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry - Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes - Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives
Author |
: Hans Petter Langtangen |
Publisher |
: Springer |
Total Pages |
: 522 |
Release |
: 2017-06-21 |
ISBN-10 |
: 9783319554563 |
ISBN-13 |
: 3319554565 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Finite Difference Computing with PDEs by : Hans Petter Langtangen
This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.
Author |
: Claes Johnson |
Publisher |
: Courier Corporation |
Total Pages |
: 290 |
Release |
: 2012-05-23 |
ISBN-10 |
: 9780486131597 |
ISBN-13 |
: 0486131599 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Numerical Solution of Partial Differential Equations by the Finite Element Method by : Claes Johnson
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.
Author |
: John C. Strikwerda |
Publisher |
: Springer |
Total Pages |
: 410 |
Release |
: 1989-09-28 |
ISBN-10 |
: UOM:39015059070451 |
ISBN-13 |
: |
Rating |
: 4/5 (51 Downloads) |
Synopsis Finite Difference Schemes and Partial Differential Equations by : John C. Strikwerda
Author |
: Vitoriano Ruas |
Publisher |
: John Wiley & Sons |
Total Pages |
: 376 |
Release |
: 2016-04-28 |
ISBN-10 |
: 9781119111368 |
ISBN-13 |
: 1119111366 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Numerical Methods for Partial Differential Equations by : Vitoriano Ruas
Numerical Methods for Partial Differential Equations: An Introduction Vitoriano Ruas, Sorbonne Universités, UPMC - Université Paris 6, France A comprehensive overview of techniques for the computational solution of PDE's Numerical Methods for Partial Differential Equations: An Introduction covers the three most popular methods for solving partial differential equations: the finite difference method, the finite element method and the finite volume method. The book combines clear descriptions of the three methods, their reliability, and practical implementation aspects. Justifications for why numerical methods for the main classes of PDE's work or not, or how well they work, are supplied and exemplified. Aimed primarily at students of Engineering, Mathematics, Computer Science, Physics and Chemistry among others this book offers a substantial insight into the principles numerical methods in this class of problems are based upon. The book can also be used as a reference for research work on numerical methods for PDE’s. Key features: A balanced emphasis is given to both practical considerations and a rigorous mathematical treatment The reliability analyses for the three methods are carried out in a unified framework and in a structured and visible manner, for the basic types of PDE's Special attention is given to low order methods, as practitioner's overwhelming default options for everyday use New techniques are employed to derive known results, thereby simplifying their proof Supplementary material is available from a companion website.
Author |
: Stig Larsson |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 263 |
Release |
: 2008-12-05 |
ISBN-10 |
: 9783540887058 |
ISBN-13 |
: 3540887059 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Partial Differential Equations with Numerical Methods by : Stig Larsson
The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.
Author |
: Daniel J. Duffy |
Publisher |
: John Wiley & Sons |
Total Pages |
: 452 |
Release |
: 2013-10-28 |
ISBN-10 |
: 9781118856482 |
ISBN-13 |
: 1118856481 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Finite Difference Methods in Financial Engineering by : Daniel J. Duffy
The world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method. In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature: Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options Early exercise features and approximation using front-fixing, penalty and variational methods Modelling stochastic volatility models using Splitting methods Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work Modelling jumps using Partial Integro Differential Equations (PIDE) Free and moving boundary value problems in QF Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.
Author |
: Boško S. Jovanović |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 416 |
Release |
: 2013-10-22 |
ISBN-10 |
: 9781447154600 |
ISBN-13 |
: 1447154606 |
Rating |
: 4/5 (00 Downloads) |
Synopsis Analysis of Finite Difference Schemes by : Boško S. Jovanović
This book develops a systematic and rigorous mathematical theory of finite difference methods for linear elliptic, parabolic and hyperbolic partial differential equations with nonsmooth solutions. Finite difference methods are a classical class of techniques for the numerical approximation of partial differential equations. Traditionally, their convergence analysis presupposes the smoothness of the coefficients, source terms, initial and boundary data, and of the associated solution to the differential equation. This then enables the application of elementary analytical tools to explore their stability and accuracy. The assumptions on the smoothness of the data and of the associated analytical solution are however frequently unrealistic. There is a wealth of boundary – and initial – value problems, arising from various applications in physics and engineering, where the data and the corresponding solution exhibit lack of regularity. In such instances classical techniques for the error analysis of finite difference schemes break down. The objective of this book is to develop the mathematical theory of finite difference schemes for linear partial differential equations with nonsmooth solutions. Analysis of Finite Difference Schemes is aimed at researchers and graduate students interested in the mathematical theory of numerical methods for the approximate solution of partial differential equations.