Applications Of Statistical Methods And Machine Learning In The Space Sciences
Download Applications Of Statistical Methods And Machine Learning In The Space Sciences full books in PDF, epub, and Kindle. Read online free Applications Of Statistical Methods And Machine Learning In The Space Sciences ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Bala Poduval |
Publisher |
: Frontiers Media SA |
Total Pages |
: 203 |
Release |
: 2023-04-12 |
ISBN-10 |
: 9782832520581 |
ISBN-13 |
: 2832520588 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Applications of statistical methods and machine learning in the space sciences by : Bala Poduval
Author |
: Željko Ivezić |
Publisher |
: Princeton University Press |
Total Pages |
: 550 |
Release |
: 2014-01-12 |
ISBN-10 |
: 9780691151687 |
ISBN-13 |
: 0691151687 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Statistics, Data Mining, and Machine Learning in Astronomy by : Željko Ivezić
As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets Features real-world data sets from contemporary astronomical surveys Uses a freely available Python codebase throughout Ideal for students and working astronomers
Author |
: Thomas Berger |
Publisher |
: Frontiers Media SA |
Total Pages |
: 240 |
Release |
: 2021-11-24 |
ISBN-10 |
: 9782889716715 |
ISBN-13 |
: 2889716716 |
Rating |
: 4/5 (15 Downloads) |
Synopsis Machine Learning in Heliophysics by : Thomas Berger
Author |
: Dirk P. Kroese |
Publisher |
: CRC Press |
Total Pages |
: 538 |
Release |
: 2019-11-20 |
ISBN-10 |
: 9781000730777 |
ISBN-13 |
: 1000730778 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Data Science and Machine Learning by : Dirk P. Kroese
Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
Author |
: Gareth James |
Publisher |
: Springer Nature |
Total Pages |
: 617 |
Release |
: 2023-08-01 |
ISBN-10 |
: 9783031387470 |
ISBN-13 |
: 3031387473 |
Rating |
: 4/5 (70 Downloads) |
Synopsis An Introduction to Statistical Learning by : Gareth James
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Author |
: Enrico Camporeale |
Publisher |
: Elsevier |
Total Pages |
: 454 |
Release |
: 2018-05-31 |
ISBN-10 |
: 9780128117897 |
ISBN-13 |
: 0128117893 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Machine Learning Techniques for Space Weather by : Enrico Camporeale
Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms. Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields. - Collects many representative non-traditional approaches to space weather into a single volume - Covers, in an accessible way, the mathematical background that is not often explained in detail for space scientists - Includes free software in the form of simple MATLAB® scripts that allow for replication of results in the book, also familiarizing readers with algorithms
Author |
: Eric D. Feigelson |
Publisher |
: Cambridge University Press |
Total Pages |
: 495 |
Release |
: 2012-07-12 |
ISBN-10 |
: 9780521767279 |
ISBN-13 |
: 052176727X |
Rating |
: 4/5 (79 Downloads) |
Synopsis Modern Statistical Methods for Astronomy by : Eric D. Feigelson
Modern Statistical Methods for Astronomy: With R Applications.
Author |
: Jianqing Fan |
Publisher |
: CRC Press |
Total Pages |
: 974 |
Release |
: 2020-09-21 |
ISBN-10 |
: 9780429527616 |
ISBN-13 |
: 0429527616 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Statistical Foundations of Data Science by : Jianqing Fan
Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Author |
: Joseph E. Borovsky |
Publisher |
: Frontiers Media SA |
Total Pages |
: 167 |
Release |
: 2023-06-08 |
ISBN-10 |
: 9782832525531 |
ISBN-13 |
: 2832525539 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Generation-to-Generation Communications in Space Physics by : Joseph E. Borovsky
Author |
: Gordon Ritter |
Publisher |
: |
Total Pages |
: 480 |
Release |
: 2021-07-30 |
ISBN-10 |
: 9811232334 |
ISBN-13 |
: 9789811232336 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Statistical Machine Learning with Applications by : Gordon Ritter
This unique compendium develops a general approach to building models of economic and financial processes, with a focus on statistical learning techniques that scale to large data sets. It introduces the key elements of a parametric statistical model: likelihood, prior, and posterior, and show how to use them to make predictions.The book covers classical techniques such as multiple regression and the Kalman filter in a clear, accessible style that has been popular with students, but also includes detailed treatments of state-of-the-art models, highlighting tree-based methods, support vector machines and kernel methods, deep learning, and reinforcement learning. Theories are supplemented by real-world examples.This reference text is useful for undergraduate, graduate and even PhD students in quantitative finance, and also to practitioners who are facing the reality that data science and machine learning are disrupting the industry.