Statistical Machine Learning With Applications
Download Statistical Machine Learning With Applications full books in PDF, epub, and Kindle. Read online free Statistical Machine Learning With Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Gareth James |
Publisher |
: Springer Nature |
Total Pages |
: 617 |
Release |
: 2023-08-01 |
ISBN-10 |
: 9783031387470 |
ISBN-13 |
: 3031387473 |
Rating |
: 4/5 (70 Downloads) |
Synopsis An Introduction to Statistical Learning by : Gareth James
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Author |
: Gordon Ritter |
Publisher |
: |
Total Pages |
: 480 |
Release |
: 2021-07-30 |
ISBN-10 |
: 9811232334 |
ISBN-13 |
: 9789811232336 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Statistical Machine Learning with Applications by : Gordon Ritter
This unique compendium develops a general approach to building models of economic and financial processes, with a focus on statistical learning techniques that scale to large data sets. It introduces the key elements of a parametric statistical model: likelihood, prior, and posterior, and show how to use them to make predictions.The book covers classical techniques such as multiple regression and the Kalman filter in a clear, accessible style that has been popular with students, but also includes detailed treatments of state-of-the-art models, highlighting tree-based methods, support vector machines and kernel methods, deep learning, and reinforcement learning. Theories are supplemented by real-world examples.This reference text is useful for undergraduate, graduate and even PhD students in quantitative finance, and also to practitioners who are facing the reality that data science and machine learning are disrupting the industry.
Author |
: Masashi Sugiyama |
Publisher |
: Morgan Kaufmann |
Total Pages |
: 535 |
Release |
: 2015-10-31 |
ISBN-10 |
: 9780128023501 |
ISBN-13 |
: 0128023503 |
Rating |
: 4/5 (01 Downloads) |
Synopsis Introduction to Statistical Machine Learning by : Masashi Sugiyama
Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials. Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks. - Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus - Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning - Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks - Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials
Author |
: Richard Golden |
Publisher |
: CRC Press |
Total Pages |
: 525 |
Release |
: 2020-06-24 |
ISBN-10 |
: 9781351051491 |
ISBN-13 |
: 1351051490 |
Rating |
: 4/5 (91 Downloads) |
Synopsis Statistical Machine Learning by : Richard Golden
The recent rapid growth in the variety and complexity of new machine learning architectures requires the development of improved methods for designing, analyzing, evaluating, and communicating machine learning technologies. Statistical Machine Learning: A Unified Framework provides students, engineers, and scientists with tools from mathematical statistics and nonlinear optimization theory to become experts in the field of machine learning. In particular, the material in this text directly supports the mathematical analysis and design of old, new, and not-yet-invented nonlinear high-dimensional machine learning algorithms. Features: Unified empirical risk minimization framework supports rigorous mathematical analyses of widely used supervised, unsupervised, and reinforcement machine learning algorithms Matrix calculus methods for supporting machine learning analysis and design applications Explicit conditions for ensuring convergence of adaptive, batch, minibatch, MCEM, and MCMC learning algorithms that minimize both unimodal and multimodal objective functions Explicit conditions for characterizing asymptotic properties of M-estimators and model selection criteria such as AIC and BIC in the presence of possible model misspecification This advanced text is suitable for graduate students or highly motivated undergraduate students in statistics, computer science, electrical engineering, and applied mathematics. The text is self-contained and only assumes knowledge of lower-division linear algebra and upper-division probability theory. Students, professional engineers, and multidisciplinary scientists possessing these minimal prerequisites will find this text challenging yet accessible. About the Author: Richard M. Golden (Ph.D., M.S.E.E., B.S.E.E.) is Professor of Cognitive Science and Participating Faculty Member in Electrical Engineering at the University of Texas at Dallas. Dr. Golden has published articles and given talks at scientific conferences on a wide range of topics in the fields of both statistics and machine learning over the past three decades. His long-term research interests include identifying conditions for the convergence of deterministic and stochastic machine learning algorithms and investigating estimation and inference in the presence of possibly misspecified probability models.
Author |
: Snezhana Gocheva-Ilieva |
Publisher |
: Mdpi AG |
Total Pages |
: 184 |
Release |
: 2021-12-21 |
ISBN-10 |
: 3036526927 |
ISBN-13 |
: 9783036526928 |
Rating |
: 4/5 (27 Downloads) |
Synopsis Statistical Data Modeling and Machine Learning with Applications by : Snezhana Gocheva-Ilieva
The modeling and processing of empirical data is one of the main subjects and goals of statistics. Nowadays, with the development of computer science, the extraction of useful and often hidden information and patterns from data sets of different volumes and complex data sets in warehouses has been added to these goals. New and powerful statistical techniques with machine learning (ML) and data mining paradigms have been developed. To one degree or another, all of these techniques and algorithms originate from a rigorous mathematical basis, including probability theory and mathematical statistics, operational research, mathematical analysis, numerical methods, etc. Popular ML methods, such as artificial neural networks (ANN), support vector machines (SVM), decision trees, random forest (RF), among others, have generated models that can be considered as straightforward applications of optimization theory and statistical estimation. The wide arsenal of classical statistical approaches combined with powerful ML techniques allows many challenging and practical problems to be solved. This Special Issue belongs to the section "Mathematics and Computer Science". Its aim is to establish a brief collection of carefully selected papers presenting new and original methods, data analyses, case studies, comparative studies, and other research on the topic of statistical data modeling and ML as well as their applications. Particular attention is given, but is not limited, to theories and applications in diverse areas such as computer science, medicine, engineering, banking, education, sociology, economics, among others. The resulting palette of methods, algorithms, and applications for statistical modeling and ML presented in this Special Issue is expected to contribute to the further development of research in this area. We also believe that the new knowledge acquired here as well as the applied results are attractive and useful for young scientists, doctoral students, and researchers from various scientific specialties.
Author |
: Pratap Dangeti |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 438 |
Release |
: 2017-07-21 |
ISBN-10 |
: 9781788291224 |
ISBN-13 |
: 1788291220 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Statistics for Machine Learning by : Pratap Dangeti
Build Machine Learning models with a sound statistical understanding. About This Book Learn about the statistics behind powerful predictive models with p-value, ANOVA, and F- statistics. Implement statistical computations programmatically for supervised and unsupervised learning through K-means clustering. Master the statistical aspect of Machine Learning with the help of this example-rich guide to R and Python. Who This Book Is For This book is intended for developers with little to no background in statistics, who want to implement Machine Learning in their systems. Some programming knowledge in R or Python will be useful. What You Will Learn Understand the Statistical and Machine Learning fundamentals necessary to build models Understand the major differences and parallels between the statistical way and the Machine Learning way to solve problems Learn how to prepare data and feed models by using the appropriate Machine Learning algorithms from the more-than-adequate R and Python packages Analyze the results and tune the model appropriately to your own predictive goals Understand the concepts of required statistics for Machine Learning Introduce yourself to necessary fundamentals required for building supervised & unsupervised deep learning models Learn reinforcement learning and its application in the field of artificial intelligence domain In Detail Complex statistics in Machine Learning worry a lot of developers. Knowing statistics helps you build strong Machine Learning models that are optimized for a given problem statement. This book will teach you all it takes to perform complex statistical computations required for Machine Learning. You will gain information on statistics behind supervised learning, unsupervised learning, reinforcement learning, and more. Understand the real-world examples that discuss the statistical side of Machine Learning and familiarize yourself with it. You will also design programs for performing tasks such as model, parameter fitting, regression, classification, density collection, and more. By the end of the book, you will have mastered the required statistics for Machine Learning and will be able to apply your new skills to any sort of industry problem. Style and approach This practical, step-by-step guide will give you an understanding of the Statistical and Machine Learning fundamentals you'll need to build models.
Author |
: Jianqing Fan |
Publisher |
: CRC Press |
Total Pages |
: 974 |
Release |
: 2020-09-21 |
ISBN-10 |
: 9780429527616 |
ISBN-13 |
: 0429527616 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Statistical Foundations of Data Science by : Jianqing Fan
Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Author |
: Carlos Andre Reis Pinheiro |
Publisher |
: SAS Institute |
Total Pages |
: 169 |
Release |
: 2021-08-06 |
ISBN-10 |
: 9781953329622 |
ISBN-13 |
: 1953329624 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Introduction to Statistical and Machine Learning Methods for Data Science by : Carlos Andre Reis Pinheiro
Boost your understanding of data science techniques to solve real-world problems Data science is an exciting, interdisciplinary field that extracts insights from data to solve business problems. This book introduces common data science techniques and methods and shows you how to apply them in real-world case studies. From data preparation and exploration to model assessment and deployment, this book describes every stage of the analytics life cycle, including a comprehensive overview of unsupervised and supervised machine learning techniques. The book guides you through the necessary steps to pick the best techniques and models and then implement those models to successfully address the original business need. No software is shown in the book, and mathematical details are kept to a minimum. This allows you to develop an understanding of the fundamentals of data science, no matter what background or experience level you have.
Author |
: Steven W. Knox |
Publisher |
: John Wiley & Sons |
Total Pages |
: 357 |
Release |
: 2018-04-17 |
ISBN-10 |
: 9781119439196 |
ISBN-13 |
: 1119439191 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Machine Learning by : Steven W. Knox
AN INTRODUCTION TO MACHINE LEARNING THAT INCLUDES THE FUNDAMENTAL TECHNIQUES, METHODS, AND APPLICATIONS PROSE Award Finalist 2019 Association of American Publishers Award for Professional and Scholarly Excellence Machine Learning: a Concise Introduction offers a comprehensive introduction to the core concepts, approaches, and applications of machine learning. The author—an expert in the field—presents fundamental ideas, terminology, and techniques for solving applied problems in classification, regression, clustering, density estimation, and dimension reduction. The design principles behind the techniques are emphasized, including the bias-variance trade-off and its influence on the design of ensemble methods. Understanding these principles leads to more flexible and successful applications. Machine Learning: a Concise Introduction also includes methods for optimization, risk estimation, and model selection— essential elements of most applied projects. This important resource: Illustrates many classification methods with a single, running example, highlighting similarities and differences between methods Presents R source code which shows how to apply and interpret many of the techniques covered Includes many thoughtful exercises as an integral part of the text, with an appendix of selected solutions Contains useful information for effectively communicating with clients A volume in the popular Wiley Series in Probability and Statistics, Machine Learning: a Concise Introduction offers the practical information needed for an understanding of the methods and application of machine learning. STEVEN W. KNOX holds a Ph.D. in Mathematics from the University of Illinois and an M.S. in Statistics from Carnegie Mellon University. He has over twenty years’ experience in using Machine Learning, Statistics, and Mathematics to solve real-world problems. He currently serves as Technical Director of Mathematics Research and Senior Advocate for Data Science at the National Security Agency.
Author |
: Masashi Sugiyama |
Publisher |
: CRC Press |
Total Pages |
: 206 |
Release |
: 2015-03-16 |
ISBN-10 |
: 9781439856901 |
ISBN-13 |
: 1439856907 |
Rating |
: 4/5 (01 Downloads) |
Synopsis Statistical Reinforcement Learning by : Masashi Sugiyama
Reinforcement learning (RL) is a framework for decision making in unknown environments based on a large amount of data. Several practical RL applications for business intelligence, plant control, and gaming have been successfully explored in recent years. Providing an accessible introduction to the field, this book covers model-based and model-free approaches, policy iteration, and policy search methods. It presents illustrative examples and state-of-the-art results, including dimensionality reduction in RL and risk-sensitive RL. The book provides a bridge between RL and data mining and machine learning research.