An Introduction To The Geometrical Analysis Of Vector Fields: With Applications To Maximum Principles And Lie Groups

An Introduction To The Geometrical Analysis Of Vector Fields: With Applications To Maximum Principles And Lie Groups
Author :
Publisher : World Scientific
Total Pages : 450
Release :
ISBN-10 : 9789813276635
ISBN-13 : 9813276630
Rating : 4/5 (35 Downloads)

Synopsis An Introduction To The Geometrical Analysis Of Vector Fields: With Applications To Maximum Principles And Lie Groups by : Stefano Biagi

This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings:

Curvature of Space and Time, with an Introduction to Geometric Analysis

Curvature of Space and Time, with an Introduction to Geometric Analysis
Author :
Publisher : American Mathematical Soc.
Total Pages : 243
Release :
ISBN-10 : 9781470456283
ISBN-13 : 1470456281
Rating : 4/5 (83 Downloads)

Synopsis Curvature of Space and Time, with an Introduction to Geometric Analysis by : Iva Stavrov

This book introduces advanced undergraduates to Riemannian geometry and mathematical general relativity. The overall strategy of the book is to explain the concept of curvature via the Jacobi equation which, through discussion of tidal forces, further helps motivate the Einstein field equations. After addressing concepts in geometry such as metrics, covariant differentiation, tensor calculus and curvature, the book explains the mathematical framework for both special and general relativity. Relativistic concepts discussed include (initial value formulation of) the Einstein equations, stress-energy tensor, Schwarzschild space-time, ADM mass and geodesic incompleteness. The concluding chapters of the book introduce the reader to geometric analysis: original results of the author and her undergraduate student collaborators illustrate how methods of analysis and differential equations are used in addressing questions from geometry and relativity. The book is mostly self-contained and the reader is only expected to have a solid foundation in multivariable and vector calculus and linear algebra. The material in this book was first developed for the 2013 summer program in geometric analysis at the Park City Math Institute, and was recently modified and expanded to reflect the author's experience of teaching mathematical general relativity to advanced undergraduates at Lewis & Clark College.

An Introduction to the Geometrical Analysis of Vector Fields

An Introduction to the Geometrical Analysis of Vector Fields
Author :
Publisher :
Total Pages : 452
Release :
ISBN-10 : 9811221243
ISBN-13 : 9789811221248
Rating : 4/5 (43 Downloads)

Synopsis An Introduction to the Geometrical Analysis of Vector Fields by : STEFANO. BONFIGLIOLI BIAGI (ANDREA.)

This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings: ODE theory; Maximum Principles (weak, strong and propagation principles); Lie groups (with an emphasis on the construction of Lie groups). This book also provides an introduction to the basic theory of Geometrical Analysis, with a new foundational presentation based on Ordinary Differential Equation techniques, in a unitary and self-contained way.

Bifurcations of Planar Vector Fields

Bifurcations of Planar Vector Fields
Author :
Publisher :
Total Pages : 240
Release :
ISBN-10 : 3662191555
ISBN-13 : 9783662191552
Rating : 4/5 (55 Downloads)

Synopsis Bifurcations of Planar Vector Fields by : Freddy Dumortier

An Introduction to the Geometrical Analysis of Vector Fields

An Introduction to the Geometrical Analysis of Vector Fields
Author :
Publisher :
Total Pages : 423
Release :
ISBN-10 : 9813276622
ISBN-13 : 9789813276628
Rating : 4/5 (22 Downloads)

Synopsis An Introduction to the Geometrical Analysis of Vector Fields by : Stefano Biagi

This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings:

Visual Complex Analysis

Visual Complex Analysis
Author :
Publisher : Oxford University Press
Total Pages : 620
Release :
ISBN-10 : 0198534469
ISBN-13 : 9780198534464
Rating : 4/5 (69 Downloads)

Synopsis Visual Complex Analysis by : Tristan Needham

This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.

Introduction to Differential Geometry

Introduction to Differential Geometry
Author :
Publisher : Springer Nature
Total Pages : 426
Release :
ISBN-10 : 9783662643402
ISBN-13 : 3662643405
Rating : 4/5 (02 Downloads)

Synopsis Introduction to Differential Geometry by : Joel W. Robbin

This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

An Introduction to Riemannian Geometry

An Introduction to Riemannian Geometry
Author :
Publisher : Springer
Total Pages : 476
Release :
ISBN-10 : 9783319086668
ISBN-13 : 3319086669
Rating : 4/5 (68 Downloads)

Synopsis An Introduction to Riemannian Geometry by : Leonor Godinho

Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Geometric Analysis of Hyperbolic Differential Equations: An Introduction

Geometric Analysis of Hyperbolic Differential Equations: An Introduction
Author :
Publisher : Cambridge University Press
Total Pages :
Release :
ISBN-10 : 9781139485814
ISBN-13 : 1139485814
Rating : 4/5 (14 Downloads)

Synopsis Geometric Analysis of Hyperbolic Differential Equations: An Introduction by : S. Alinhac

Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required.

Topics in Noncommutative Algebra

Topics in Noncommutative Algebra
Author :
Publisher : Springer
Total Pages : 554
Release :
ISBN-10 : 9783642225970
ISBN-13 : 3642225977
Rating : 4/5 (70 Downloads)

Synopsis Topics in Noncommutative Algebra by : Andrea Bonfiglioli

Motivated by the importance of the Campbell, Baker, Hausdorff, Dynkin Theorem in many different branches of Mathematics and Physics (Lie group-Lie algebra theory, linear PDEs, Quantum and Statistical Mechanics, Numerical Analysis, Theoretical Physics, Control Theory, sub-Riemannian Geometry), this monograph is intended to: fully enable readers (graduates or specialists, mathematicians, physicists or applied scientists, acquainted with Algebra or not) to understand and apply the statements and numerous corollaries of the main result, provide a wide spectrum of proofs from the modern literature, comparing different techniques and furnishing a unifying point of view and notation, provide a thorough historical background of the results, together with unknown facts about the effective early contributions by Schur, Poincaré, Pascal, Campbell, Baker, Hausdorff and Dynkin, give an outlook on the applications, especially in Differential Geometry (Lie group theory) and Analysis (PDEs of subelliptic type) and quickly enable the reader, through a description of the state-of-art and open problems, to understand the modern literature concerning a theorem which, though having its roots in the beginning of the 20th century, has not ceased to provide new problems and applications. The book assumes some undergraduate-level knowledge of algebra and analysis, but apart from that is self-contained. Part II of the monograph is devoted to the proofs of the algebraic background. The monograph may therefore provide a tool for beginners in Algebra.