Bifurcations of Planar Vector Fields

Bifurcations of Planar Vector Fields
Author :
Publisher :
Total Pages : 240
Release :
ISBN-10 : 3662191555
ISBN-13 : 9783662191552
Rating : 4/5 (55 Downloads)

Synopsis Bifurcations of Planar Vector Fields by : Freddy Dumortier

Bifurcations of Planar Vector Fields

Bifurcations of Planar Vector Fields
Author :
Publisher : Springer
Total Pages : 404
Release :
ISBN-10 : 9783540467229
ISBN-13 : 354046722X
Rating : 4/5 (29 Downloads)

Synopsis Bifurcations of Planar Vector Fields by : Jean-Pierre Francoise

Normal Forms and Bifurcation of Planar Vector Fields

Normal Forms and Bifurcation of Planar Vector Fields
Author :
Publisher : Cambridge University Press
Total Pages : 482
Release :
ISBN-10 : 9780521372268
ISBN-13 : 0521372267
Rating : 4/5 (68 Downloads)

Synopsis Normal Forms and Bifurcation of Planar Vector Fields by : Shui-Nee Chow

This book is concerned with the bifurcation theory, the study of the changes in the structures of the solution of ordinary differential equations as parameters of the model vary.

Bifurcations of Planar Vector Fields

Bifurcations of Planar Vector Fields
Author :
Publisher : Springer
Total Pages : 234
Release :
ISBN-10 : 9783540384335
ISBN-13 : 3540384332
Rating : 4/5 (35 Downloads)

Synopsis Bifurcations of Planar Vector Fields by : Freddy Dumortier

The book reports on recent work by the authors on the bifurcation structure of singular points of planar vector fields whose linear parts are nilpotent. The bifurcation diagrams of the most important codimension-three cases are studied in detail. The results presented reach the limits of what is currently known on the bifurcation theory of planar vector fields. While the treatment is geometric, special analytical tools using abelian integrals are needed, and are explicitly developed. The rescaling and normalization methods are improved for application here. The reader is assumed to be familiar with the elements of Bifurcation and Dynamical Systems Theory. The book is addressed to researchers and graduate students working in Ordinary Differential Equations and Dynamical Systems, as well as anyone modelling complex multiparametric phenomena.

Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem

Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem
Author :
Publisher : Springer Science & Business Media
Total Pages : 230
Release :
ISBN-10 : 3764359005
ISBN-13 : 9783764359003
Rating : 4/5 (05 Downloads)

Synopsis Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem by : Robert Roussarie

In a coherent, exhaustive and progressive way, this book presents the tools for studying local bifurcations of limit cycles in families of planar vector fields. A systematic introduction is given to such methods as division of an analytic family of functions in its ideal of coefficients, and asymptotic expansion of non-differentiable return maps and desingularisation. The exposition moves from classical analytic geometric methods applied to regular limit periodic sets to more recent tools for singular limit sets. The methods can be applied to theoretical problems such as Hilbert's 16th problem, but also for the purpose of establishing bifurcation diagrams of specific families as well as explicit computations. - - - The book as a whole is a well-balanced exposition that can be recommended to all those who want to gain a thorough understanding and proficiency in the recently developed methods. The book, reflecting the current state of the art, can also be used for teaching special courses. (Mathematical Reviews)

Bifurcations and Periodic Orbits of Vector Fields

Bifurcations and Periodic Orbits of Vector Fields
Author :
Publisher : Springer Science & Business Media
Total Pages : 500
Release :
ISBN-10 : 0792323920
ISBN-13 : 9780792323921
Rating : 4/5 (20 Downloads)

Synopsis Bifurcations and Periodic Orbits of Vector Fields by : Dana Schlomiuk

The last thirty years were a period of continuous and intense growth in the subject of dynamical systems. New concepts and techniques and at the same time new areas of applications of the theory were found. The 31st session of the Seminaire de Mathematiques Superieures (SMS) held at the Universite de Montreal in July 1992 was on dynamical systems having as its center theme "Bifurcations and periodic orbits of vector fields". This session of the SMS was a NATO Advanced Study Institute (ASI). This ASI had the purpose of acquainting the participants with some of the most recent developments and of stimulating new research around the chosen center theme. These developments include the major tools of the new resummation techniques with applications, in particular to the proof of the non-accumulation of limit-cycles for real-analytic plane vector fields. One of the aims of the ASI was to bring together methods from real and complex dy namical systems. There is a growing awareness that an interplay between real and complex methods is both useful and necessary for the solution of some of the problems. Complex techniques become powerful tools which yield valuable information when applied to the study of the dynamics of real vector fields. The recent developments show that no rigid frontiers between disciplines exist and that interesting new developments occur when ideas and techniques from diverse disciplines are married. One of the aims of the ASI was to show these multiple interactions at work.

Planar Dynamical Systems

Planar Dynamical Systems
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 464
Release :
ISBN-10 : 9783110389142
ISBN-13 : 3110389142
Rating : 4/5 (42 Downloads)

Synopsis Planar Dynamical Systems by : Yirong Liu

In 2008, November 23-28, the workshop of ”Classical Problems on Planar Polynomial Vector Fields ” was held in the Banff International Research Station, Canada. Called "classical problems", it was concerned with the following: (1) Problems on integrability of planar polynomial vector fields. (2) The problem of the center stated by Poincaré for real polynomial differential systems, which asks us to recognize when a planar vector field defined by polynomials of degree at most n possesses a singularity which is a center. (3) Global geometry of specific classes of planar polynomial vector fields. (4) Hilbert’s 16th problem. These problems had been posed more than 110 years ago. Therefore, they are called "classical problems" in the studies of the theory of dynamical systems. The qualitative theory and stability theory of differential equations, created by Poincaré and Lyapunov at the end of the 19th century, had major developments as two branches of the theory of dynamical systems during the 20th century. As a part of the basic theory of nonlinear science, it is one of the very active areas in the new millennium. This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert’s 16th problem. The book is intended for graduate students, post-doctors and researchers in dynamical systems. For all engineers who are interested in the theory of dynamical systems, it is also a reasonable reference. It requires a minimum background of a one-year course on nonlinear differential equations.

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 648
Release :
ISBN-10 : 9781475739787
ISBN-13 : 1475739788
Rating : 4/5 (87 Downloads)

Synopsis Elements of Applied Bifurcation Theory by : Yuri Kuznetsov

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

Bifurcations and Periodic Orbits of Vector Fields

Bifurcations and Periodic Orbits of Vector Fields
Author :
Publisher : Springer Science & Business Media
Total Pages : 483
Release :
ISBN-10 : 9789401582384
ISBN-13 : 9401582386
Rating : 4/5 (84 Downloads)

Synopsis Bifurcations and Periodic Orbits of Vector Fields by : Dana Schlomiuk

The last thirty years were a period of continuous and intense growth in the subject of dynamical systems. New concepts and techniques and at the same time new areas of applications of the theory were found. The 31st session of the Seminaire de Mathematiques Superieures (SMS) held at the Universite de Montreal in July 1992 was on dynamical systems having as its center theme "Bifurcations and periodic orbits of vector fields". This session of the SMS was a NATO Advanced Study Institute (ASI). This ASI had the purpose of acquainting the participants with some of the most recent developments and of stimulating new research around the chosen center theme. These developments include the major tools of the new resummation techniques with applications, in particular to the proof of the non-accumulation of limit-cycles for real-analytic plane vector fields. One of the aims of the ASI was to bring together methods from real and complex dy namical systems. There is a growing awareness that an interplay between real and complex methods is both useful and necessary for the solution of some of the problems. Complex techniques become powerful tools which yield valuable information when applied to the study of the dynamics of real vector fields. The recent developments show that no rigid frontiers between disciplines exist and that interesting new developments occur when ideas and techniques from diverse disciplines are married. One of the aims of the ASI was to show these multiple interactions at work.

Desingularization of Nilpotent Singularities in Families of Planar Vector Fields

Desingularization of Nilpotent Singularities in Families of Planar Vector Fields
Author :
Publisher : American Mathematical Soc.
Total Pages : 122
Release :
ISBN-10 : 9780821829271
ISBN-13 : 0821829270
Rating : 4/5 (71 Downloads)

Synopsis Desingularization of Nilpotent Singularities in Families of Planar Vector Fields by : Daniel Panazzolo

This work aims to prove a desingularization theorem for analytic families of two-dimensional vector fields, under the hypothesis that all its singularities have a non-vanishing first jet. Application to problems of singular perturbations and finite cyclicity are discussed in the last chapter.