Algebraic Combinatorics and the Monster Group

Algebraic Combinatorics and the Monster Group
Author :
Publisher : Cambridge University Press
Total Pages : 583
Release :
ISBN-10 : 9781009338042
ISBN-13 : 1009338048
Rating : 4/5 (42 Downloads)

Synopsis Algebraic Combinatorics and the Monster Group by : Alexander A. Ivanov

The current state of knowledge on the Monster group, including Majorana theory, Vertex Operator Algebras, Moonshine and maximal subgroups.

Groups, Combinatorics and Geometry

Groups, Combinatorics and Geometry
Author :
Publisher : Cambridge University Press
Total Pages : 505
Release :
ISBN-10 : 9780521406857
ISBN-13 : 0521406854
Rating : 4/5 (57 Downloads)

Synopsis Groups, Combinatorics and Geometry by : Martin W. Liebeck

This volume contains a collection of papers on the subject of the classification of finite simple groups.

The Monster Group and Majorana Involutions

The Monster Group and Majorana Involutions
Author :
Publisher : Cambridge University Press
Total Pages : 267
Release :
ISBN-10 : 9780521889940
ISBN-13 : 0521889944
Rating : 4/5 (40 Downloads)

Synopsis The Monster Group and Majorana Involutions by : Aleksandr Anatolievich Ivanov

A rigorous construction and uniqueness proof for the Monster group, detailing its relation to Majorana involutions.

Simon

Simon
Author :
Publisher : Delacorte Press
Total Pages : 375
Release :
ISBN-10 : 9780345532213
ISBN-13 : 034553221X
Rating : 4/5 (13 Downloads)

Synopsis Simon by : Alexander Masters

Alexander Masters tripped over his first book subject on a Cambridge sidewalk, and the result was the multi-award-winning bestseller Stuart: A Life Backwards. His second, he’s found under his floorboards. One of the greatest mathematical prodigies of the twentieth century, Simon Norton stomps around Alexander’s basement in semidarkness, dodging between stalagmites of bus timetables and engorged plastic bags, eating tinned kippers stirred into packets of Bombay mix. Simon is exploring a theoretical puzzle so complex and critical to our understanding of the universe that it is known as the Monster. It looks like a sudoku table—except a sudoku table has nine columns of numbers. The Monster has 808017424794512875886459904961710757005754368000000000 columns. But that’s not the whole story. What’s inside the decaying sports bag he never lets out of his clutches? Why does he hurtle out of the house in the middle of the night? And—good God!—what is that noxious smell that creeps up the stairwell? Grumpy, poignant, comical—more intimate than either the author or his quarry intended—Simon: The Genius in My Basement is the story of a friendship and a pursuit. Part biography, part memoir, and part popular science, it is a study of the frailty of brilliance, the measures of happiness, and Britain’s most uncooperative egghead eccentric.

The Princeton Companion to Mathematics

The Princeton Companion to Mathematics
Author :
Publisher : Princeton University Press
Total Pages : 1057
Release :
ISBN-10 : 9781400830398
ISBN-13 : 1400830397
Rating : 4/5 (98 Downloads)

Synopsis The Princeton Companion to Mathematics by : Timothy Gowers

The ultimate mathematics reference book This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries—written especially for this book by some of the world's leading mathematicians—that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music—and much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics. Accessible in style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors Presents major ideas and branches of pure mathematics in a clear, accessible style Defines and explains important mathematical concepts, methods, theorems, and open problems Introduces the language of mathematics and the goals of mathematical research Covers number theory, algebra, analysis, geometry, logic, probability, and more Traces the history and development of modern mathematics Profiles more than ninety-five mathematicians who influenced those working today Explores the influence of mathematics on other disciplines Includes bibliographies, cross-references, and a comprehensive index Contributors include: Graham Allan, Noga Alon, George Andrews, Tom Archibald, Sir Michael Atiyah, David Aubin, Joan Bagaria, Keith Ball, June Barrow-Green, Alan Beardon, David D. Ben-Zvi, Vitaly Bergelson, Nicholas Bingham, Béla Bollobás, Henk Bos, Bodil Branner, Martin R. Bridson, John P. Burgess, Kevin Buzzard, Peter J. Cameron, Jean-Luc Chabert, Eugenia Cheng, Clifford C. Cocks, Alain Connes, Leo Corry, Wolfgang Coy, Tony Crilly, Serafina Cuomo, Mihalis Dafermos, Partha Dasgupta, Ingrid Daubechies, Joseph W. Dauben, John W. Dawson Jr., Francois de Gandt, Persi Diaconis, Jordan S. Ellenberg, Lawrence C. Evans, Florence Fasanelli, Anita Burdman Feferman, Solomon Feferman, Charles Fefferman, Della Fenster, José Ferreirós, David Fisher, Terry Gannon, A. Gardiner, Charles C. Gillispie, Oded Goldreich, Catherine Goldstein, Fernando Q. Gouvêa, Timothy Gowers, Andrew Granville, Ivor Grattan-Guinness, Jeremy Gray, Ben Green, Ian Grojnowski, Niccolò Guicciardini, Michael Harris, Ulf Hashagen, Nigel Higson, Andrew Hodges, F. E. A. Johnson, Mark Joshi, Kiran S. Kedlaya, Frank Kelly, Sergiu Klainerman, Jon Kleinberg, Israel Kleiner, Jacek Klinowski, Eberhard Knobloch, János Kollár, T. W. Körner, Michael Krivelevich, Peter D. Lax, Imre Leader, Jean-François Le Gall, W. B. R. Lickorish, Martin W. Liebeck, Jesper Lützen, Des MacHale, Alan L. Mackay, Shahn Majid, Lech Maligranda, David Marker, Jean Mawhin, Barry Mazur, Dusa McDuff, Colin McLarty, Bojan Mohar, Peter M. Neumann, Catherine Nolan, James Norris, Brian Osserman, Richard S. Palais, Marco Panza, Karen Hunger Parshall, Gabriel P. Paternain, Jeanne Peiffer, Carl Pomerance, Helmut Pulte, Bruce Reed, Michael C. Reed, Adrian Rice, Eleanor Robson, Igor Rodnianski, John Roe, Mark Ronan, Edward Sandifer, Tilman Sauer, Norbert Schappacher, Andrzej Schinzel, Erhard Scholz, Reinhard Siegmund-Schultze, Gordon Slade, David J. Spiegelhalter, Jacqueline Stedall, Arild Stubhaug, Madhu Sudan, Terence Tao, Jamie Tappenden, C. H. Taubes, Rüdiger Thiele, Burt Totaro, Lloyd N. Trefethen, Dirk van Dalen, Richard Weber, Dominic Welsh, Avi Wigderson, Herbert Wilf, David Wilkins, B. Yandell, Eric Zaslow, and Doron Zeilberger

Group Theory and Computation

Group Theory and Computation
Author :
Publisher : Springer
Total Pages : 213
Release :
ISBN-10 : 9789811320477
ISBN-13 : 9811320470
Rating : 4/5 (77 Downloads)

Synopsis Group Theory and Computation by : N.S. Narasimha Sastry

This book is a blend of recent developments in theoretical and computational aspects of group theory. It presents the state-of-the-art research topics in different aspects of group theory, namely, character theory, representation theory, integral group rings, the Monster simple group, computational algorithms and methods on finite groups, finite loops, periodic groups, Camina groups and generalizations, automorphisms and non-abelian tensor product of groups. Presenting a collection of invited articles by some of the leading and highly active researchers in the theory of finite groups and their representations and the Monster group, with a focus on computational aspects, this book is of particular interest to researchers in the area of group theory and related fields of mathematics.

Lie Algebras, Vertex Operator Algebras and Their Applications

Lie Algebras, Vertex Operator Algebras and Their Applications
Author :
Publisher : American Mathematical Soc.
Total Pages : 500
Release :
ISBN-10 : 9780821839867
ISBN-13 : 0821839861
Rating : 4/5 (67 Downloads)

Synopsis Lie Algebras, Vertex Operator Algebras and Their Applications by : Yi-Zhi Huang

The articles in this book are based on talks given at the international conference 'Lie algebras, vertex operator algebras and their applications'. The focus of the papers is mainly on Lie algebras, quantum groups, vertex operator algebras and their applications to number theory, combinatorics and conformal field theory.

Vertex Algebras and Algebraic Curves

Vertex Algebras and Algebraic Curves
Author :
Publisher : American Mathematical Soc.
Total Pages : 418
Release :
ISBN-10 : 9780821836743
ISBN-13 : 0821836749
Rating : 4/5 (43 Downloads)

Synopsis Vertex Algebras and Algebraic Curves by : Edward Frenkel

Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.

Advances in Algebra and Combinatorics

Advances in Algebra and Combinatorics
Author :
Publisher : World Scientific
Total Pages : 384
Release :
ISBN-10 : 9789812790002
ISBN-13 : 9812790004
Rating : 4/5 (02 Downloads)

Synopsis Advances in Algebra and Combinatorics by : K. P. Shum

This volume is a compilation of lectures on algebras and combinatorics presented at the Second International Congress in Algebra and Combinatorics. It reports on not only new results, but also on open problems in the field. The proceedings volume is useful for graduate students and researchers in algebras and combinatorics. Contributors include eminent figures such as V Artamanov, L Bokut, J Fountain, P Hilton, M Jambu, P Kolesnikov, Li Wei and K Ueno.

Progress in Algebraic Combinatorics

Progress in Algebraic Combinatorics
Author :
Publisher :
Total Pages : 478
Release :
ISBN-10 : UOM:39015037825299
ISBN-13 :
Rating : 4/5 (99 Downloads)

Synopsis Progress in Algebraic Combinatorics by : Eiichi Bannai

This volume consists of thirteen papers on algebraic combinatorics and related areas written by leading experts around the world. There are four survey papers illustrating the following currently active branches of algebraic combinatorics: vertex operator algebras, spherical designs, Kerdock codes and related combinatorial objects, and geometry of matrices. The remaining nine papers are original research articles covering a wide range of disciplines, from classical topics such as permutation groups and finite geometry, to modern topics such as spin models and invariants of 3-manifolds. Two papers occupy nearly half the volume and present a comprehensive account of new concepts: ``Combinatorial Cell Complexes'' by M. Aschbacher and ``Quantum Matroids'' by P. Terwilliger. Terwilliger's theory of quantum matroids unites a part of the theory of finite geometries and a part of the theory of distance-regular graphs--great progess is expected in this field. K. Nomura's paper bridges the classical and the modern by establishing a connection between certain bipartite distance-regular graphs and spin models. All contributors to this volume were invited speakers at the conference ``Algebraic Combinatorics'' in Fukuoka, Japan (1993) and participated in the Research Institute in the Mathematical Sciences (RIMS) research project on algebraic combinatorics held at Kyoto University in 1994.