Handbook of Computational Group Theory

Handbook of Computational Group Theory
Author :
Publisher : CRC Press
Total Pages : 532
Release :
ISBN-10 : 9781420035216
ISBN-13 : 1420035215
Rating : 4/5 (16 Downloads)

Synopsis Handbook of Computational Group Theory by : Derek F. Holt

The origins of computation group theory (CGT) date back to the late 19th and early 20th centuries. Since then, the field has flourished, particularly during the past 30 to 40 years, and today it remains a lively and active branch of mathematics. The Handbook of Computational Group Theory offers the first complete treatment of all the fundame

Computation with Finitely Presented Groups

Computation with Finitely Presented Groups
Author :
Publisher : Cambridge University Press
Total Pages : 624
Release :
ISBN-10 : 9780521432139
ISBN-13 : 0521432138
Rating : 4/5 (39 Downloads)

Synopsis Computation with Finitely Presented Groups by : Charles C. Sims

Research in computational group theory, an active subfield of computational algebra, has emphasised three areas: finite permutation groups, finite solvable groups, and finitely presented groups. This book deals with the third of these areas. The author emphasises the connections with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, computational number theory, and computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms from computational number theory are used to study the abelian quotients of a finitely presented group. The work of Baumslag, Cannonito and Miller on computing nonabelian polycyclic quotients is described as a generalisation of Buchberger's Gröbner basis methods to right ideals in the integral group ring of a polycyclic group. Researchers in computational group theory, mathematicians interested in finitely presented groups and theoretical computer scientists will find this book useful.

Group Theory and Computation

Group Theory and Computation
Author :
Publisher : Springer
Total Pages : 213
Release :
ISBN-10 : 9789811320477
ISBN-13 : 9811320470
Rating : 4/5 (77 Downloads)

Synopsis Group Theory and Computation by : N.S. Narasimha Sastry

This book is a blend of recent developments in theoretical and computational aspects of group theory. It presents the state-of-the-art research topics in different aspects of group theory, namely, character theory, representation theory, integral group rings, the Monster simple group, computational algorithms and methods on finite groups, finite loops, periodic groups, Camina groups and generalizations, automorphisms and non-abelian tensor product of groups. Presenting a collection of invited articles by some of the leading and highly active researchers in the theory of finite groups and their representations and the Monster group, with a focus on computational aspects, this book is of particular interest to researchers in the area of group theory and related fields of mathematics.

Computation with Linear Algebraic Groups

Computation with Linear Algebraic Groups
Author :
Publisher : CRC Press
Total Pages : 324
Release :
ISBN-10 : 9781498722919
ISBN-13 : 1498722911
Rating : 4/5 (19 Downloads)

Synopsis Computation with Linear Algebraic Groups by : Willem Adriaan de Graaf

Designed as a self-contained account of a number of key algorithmic problems and their solutions for linear algebraic groups, this book combines in one single text both an introduction to the basic theory of linear algebraic groups and a substantial collection of useful algorithms. Computation with Linear Algebraic Groups offers an invaluable guide to graduate students and researchers working in algebraic groups, computational algebraic geometry, and computational group theory, as well as those looking for a concise introduction to the theory of linear algebraic groups.

Group Theory in the Bedroom, and Other Mathematical Diversions

Group Theory in the Bedroom, and Other Mathematical Diversions
Author :
Publisher : Macmillan + ORM
Total Pages : 284
Release :
ISBN-10 : 9781429938570
ISBN-13 : 1429938579
Rating : 4/5 (70 Downloads)

Synopsis Group Theory in the Bedroom, and Other Mathematical Diversions by : Brian Hayes

“A refreshing collection of superb mathematical essays . . . from choosing up sides to choosing names, the topics are intriguingly nonstandard . . . First-rate.” —John Allen Paulos, author of Innumeracy A science and technology journalist and essayist whose work has appeared in multiple anthologies, Brian Hayes now presents a selection of his most memorable pieces—including the National Magazine Award–winning “Clock of Ages”—in this enjoyable volume. In addition, Hayes embellishes the collection with an overall scene-setting preface, reconfigured illustrations, and a refreshingly self-critical “Afterthoughts” section appended to each essay. “You don’t have to be a geek to appreciate Hayes’s lively, self-effacing style . . . The first essay explains how clockmakers developed the gears and linkages that enabled fabled medieval clocks to reach remarkable accuracy, as well as predict the day Easter would fall on. Other essays celebrate the notion of random numbers and why they are so hard to achieve. Numerical analysis also plays a role in economic models based on the kinetic theory of gases or simplified markets involving iterations of buying and selling. Hayes goes on to explain how statistics have been applied to compute which quarrels—from interpersonal to world wars—are the deadliest (surprising results here) . . . Challenging but rewarding for anyone intrigued by numbers.” —Kirkus Reviews “As much as any book I can name, Group Theory in the Bedroom conveys to a general audience the playfulness involved in doing mathematics: how questions arise as a form of play, how our first attempts at answering questions usually seem naive in hindsight but are crucial for finding eventual solutions, and how a good solution just feels right.” —David Austin, Notices of the AMS

Mathematics and Computation

Mathematics and Computation
Author :
Publisher : Princeton University Press
Total Pages : 434
Release :
ISBN-10 : 9780691189130
ISBN-13 : 0691189137
Rating : 4/5 (30 Downloads)

Synopsis Mathematics and Computation by : Avi Wigderson

From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography

Complexity and Randomness in Group Theory

Complexity and Randomness in Group Theory
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 386
Release :
ISBN-10 : 9783110667028
ISBN-13 : 3110667029
Rating : 4/5 (28 Downloads)

Synopsis Complexity and Randomness in Group Theory by : Frédérique Bassino

This book shows new directions in group theory motivated by computer science. It reflects the transition from geometric group theory to group theory of the 21st century that has strong connections to computer science. Now that geometric group theory is drifting further and further away from group theory to geometry, it is natural to look for new tools and new directions in group theory which are present.

A Group Theoretic Approach to Quantum Information

A Group Theoretic Approach to Quantum Information
Author :
Publisher : Springer
Total Pages : 240
Release :
ISBN-10 : 9783319452418
ISBN-13 : 331945241X
Rating : 4/5 (18 Downloads)

Synopsis A Group Theoretic Approach to Quantum Information by : Masahito Hayashi

This book is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solutions without assuming the asymptotic setting. Next, this book addresses the quantum error correcting code with the symmetric structure of Weyl-Heisenberg groups. This structure leads to understand the quantum error correcting code systematically. Finally, this book focuses on the quantum universal information protocols by using the group SU(d). This topic can be regarded as a quantum version of the Csiszar-Korner's universal coding theory with the type method. The required mathematical knowledge about group representation is summarized in the companion book, Group Representation for Quantum Theory.

Group Theory in a Nutshell for Physicists

Group Theory in a Nutshell for Physicists
Author :
Publisher : Princeton University Press
Total Pages : 632
Release :
ISBN-10 : 9781400881185
ISBN-13 : 1400881188
Rating : 4/5 (85 Downloads)

Synopsis Group Theory in a Nutshell for Physicists by : A. Zee

A concise, modern textbook on group theory written especially for physicists Although group theory is a mathematical subject, it is indispensable to many areas of modern theoretical physics, from atomic physics to condensed matter physics, particle physics to string theory. In particular, it is essential for an understanding of the fundamental forces. Yet until now, what has been missing is a modern, accessible, and self-contained textbook on the subject written especially for physicists. Group Theory in a Nutshell for Physicists fills this gap, providing a user-friendly and classroom-tested text that focuses on those aspects of group theory physicists most need to know. From the basic intuitive notion of a group, A. Zee takes readers all the way up to how theories based on gauge groups could unify three of the four fundamental forces. He also includes a concise review of the linear algebra needed for group theory, making the book ideal for self-study. Provides physicists with a modern and accessible introduction to group theory Covers applications to various areas of physics, including field theory, particle physics, relativity, and much more Topics include finite group and character tables; real, pseudoreal, and complex representations; Weyl, Dirac, and Majorana equations; the expanding universe and group theory; grand unification; and much more The essential textbook for students and an invaluable resource for researchers Features a brief, self-contained treatment of linear algebra An online illustration package is available to professors Solutions manual (available only to professors)

Abstract Algebra

Abstract Algebra
Author :
Publisher : Orthogonal Publishing L3c
Total Pages : 0
Release :
ISBN-10 : 1944325190
ISBN-13 : 9781944325190
Rating : 4/5 (90 Downloads)

Synopsis Abstract Algebra by : Thomas Judson

Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.