Advances in Kernel Methods

Advances in Kernel Methods
Author :
Publisher : MIT Press
Total Pages : 400
Release :
ISBN-10 : 0262194163
ISBN-13 : 9780262194167
Rating : 4/5 (63 Downloads)

Synopsis Advances in Kernel Methods by : Bernhard Schölkopf

A young girl hears the story of her great-great-great-great- grandfather and his brother who came to the United States to make a better life for themselves helping to build the transcontinental railroad.

Kernel Methods in Computational Biology

Kernel Methods in Computational Biology
Author :
Publisher : MIT Press
Total Pages : 428
Release :
ISBN-10 : 0262195097
ISBN-13 : 9780262195096
Rating : 4/5 (97 Downloads)

Synopsis Kernel Methods in Computational Biology by : Bernhard Schölkopf

A detailed overview of current research in kernel methods and their application to computational biology.

Learning with Kernels

Learning with Kernels
Author :
Publisher : MIT Press
Total Pages : 645
Release :
ISBN-10 : 9780262536578
ISBN-13 : 0262536579
Rating : 4/5 (78 Downloads)

Synopsis Learning with Kernels by : Bernhard Scholkopf

A comprehensive introduction to Support Vector Machines and related kernel methods. In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs—-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.

Kernel Methods for Remote Sensing Data Analysis

Kernel Methods for Remote Sensing Data Analysis
Author :
Publisher : John Wiley & Sons
Total Pages : 434
Release :
ISBN-10 : 9780470749005
ISBN-13 : 0470749008
Rating : 4/5 (05 Downloads)

Synopsis Kernel Methods for Remote Sensing Data Analysis by : Gustau Camps-Valls

Kernel methods have long been established as effective techniques in the framework of machine learning and pattern recognition, and have now become the standard approach to many remote sensing applications. With algorithms that combine statistics and geometry, kernel methods have proven successful across many different domains related to the analysis of images of the Earth acquired from airborne and satellite sensors, including natural resource control, detection and monitoring of anthropic infrastructures (e.g. urban areas), agriculture inventorying, disaster prevention and damage assessment, and anomaly and target detection. Presenting the theoretical foundations of kernel methods (KMs) relevant to the remote sensing domain, this book serves as a practical guide to the design and implementation of these methods. Five distinct parts present state-of-the-art research related to remote sensing based on the recent advances in kernel methods, analysing the related methodological and practical challenges: Part I introduces the key concepts of machine learning for remote sensing, and the theoretical and practical foundations of kernel methods. Part II explores supervised image classification including Super Vector Machines (SVMs), kernel discriminant analysis, multi-temporal image classification, target detection with kernels, and Support Vector Data Description (SVDD) algorithms for anomaly detection. Part III looks at semi-supervised classification with transductive SVM approaches for hyperspectral image classification and kernel mean data classification. Part IV examines regression and model inversion, including the concept of a kernel unmixing algorithm for hyperspectral imagery, the theory and methods for quantitative remote sensing inverse problems with kernel-based equations, kernel-based BRDF (Bidirectional Reflectance Distribution Function), and temperature retrieval KMs. Part V deals with kernel-based feature extraction and provides a review of the principles of several multivariate analysis methods and their kernel extensions. This book is aimed at engineers, scientists and researchers involved in remote sensing data processing, and also those working within machine learning and pattern recognition.

Kernel Methods for Pattern Analysis

Kernel Methods for Pattern Analysis
Author :
Publisher : Cambridge University Press
Total Pages : 520
Release :
ISBN-10 : 0521813972
ISBN-13 : 9780521813976
Rating : 4/5 (72 Downloads)

Synopsis Kernel Methods for Pattern Analysis by : John Shawe-Taylor

Publisher Description

Digital Signal Processing with Kernel Methods

Digital Signal Processing with Kernel Methods
Author :
Publisher : John Wiley & Sons
Total Pages : 665
Release :
ISBN-10 : 9781118611791
ISBN-13 : 1118611799
Rating : 4/5 (91 Downloads)

Synopsis Digital Signal Processing with Kernel Methods by : Jose Luis Rojo-Alvarez

A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors: http://github.com/DSPKM • Presents the necessary basic ideas from both digital signal processing and machine learning concepts • Reviews the state-of-the-art in SVM algorithms for classification and detection problems in the context of signal processing • Surveys advances in kernel signal processing beyond SVM algorithms to present other highly relevant kernel methods for digital signal processing An excellent book for signal processing researchers and practitioners, Digital Signal Processing with Kernel Methods will also appeal to those involved in machine learning and pattern recognition.

Advances in Large Margin Classifiers

Advances in Large Margin Classifiers
Author :
Publisher : MIT Press
Total Pages : 436
Release :
ISBN-10 : 0262194481
ISBN-13 : 9780262194488
Rating : 4/5 (81 Downloads)

Synopsis Advances in Large Margin Classifiers by : Alexander J. Smola

The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.

An Introduction to Support Vector Machines and Other Kernel-based Learning Methods

An Introduction to Support Vector Machines and Other Kernel-based Learning Methods
Author :
Publisher : Cambridge University Press
Total Pages : 216
Release :
ISBN-10 : 0521780195
ISBN-13 : 9780521780193
Rating : 4/5 (95 Downloads)

Synopsis An Introduction to Support Vector Machines and Other Kernel-based Learning Methods by : Nello Cristianini

This is a comprehensive introduction to Support Vector Machines, a generation learning system based on advances in statistical learning theory.

Machine Learning with SVM and Other Kernel Methods

Machine Learning with SVM and Other Kernel Methods
Author :
Publisher : PHI Learning Pvt. Ltd.
Total Pages : 495
Release :
ISBN-10 : 9788120334359
ISBN-13 : 8120334353
Rating : 4/5 (59 Downloads)

Synopsis Machine Learning with SVM and Other Kernel Methods by : K.P. Soman

Support vector machines (SVMs) represent a breakthrough in the theory of learning systems. It is a new generation of learning algorithms based on recent advances in statistical learning theory. Designed for the undergraduate students of computer science and engineering, this book provides a comprehensive introduction to the state-of-the-art algorithm and techniques in this field. It covers most of the well known algorithms supplemented with code and data. One Class, Multiclass and hierarchical SVMs are included which will help the students to solve any pattern classification problems with ease and that too in Excel. KEY FEATURES  Extensive coverage of Lagrangian duality and iterative methods for optimization  Separate chapters on kernel based spectral clustering, text mining, and other applications in computational linguistics and speech processing  A chapter on latest sequential minimization algorithms and its modifications to do online learning  Step-by-step method of solving the SVM based classification problem in Excel.  Kernel versions of PCA, CCA and ICA The CD accompanying the book includes animations on solving SVM training problem in Microsoft EXCEL and by using SVMLight software . In addition, Matlab codes are given for all the formulations of SVM along with the data sets mentioned in the exercise section of each chapter.

Machine Learning for Audio, Image and Video Analysis

Machine Learning for Audio, Image and Video Analysis
Author :
Publisher : Springer
Total Pages : 564
Release :
ISBN-10 : 9781447167358
ISBN-13 : 144716735X
Rating : 4/5 (58 Downloads)

Synopsis Machine Learning for Audio, Image and Video Analysis by : Francesco Camastra

This second edition focuses on audio, image and video data, the three main types of input that machines deal with when interacting with the real world. A set of appendices provides the reader with self-contained introductions to the mathematical background necessary to read the book. Divided into three main parts, From Perception to Computation introduces methodologies aimed at representing the data in forms suitable for computer processing, especially when it comes to audio and images. Whilst the second part, Machine Learning includes an extensive overview of statistical techniques aimed at addressing three main problems, namely classification (automatically assigning a data sample to one of the classes belonging to a predefined set), clustering (automatically grouping data samples according to the similarity of their properties) and sequence analysis (automatically mapping a sequence of observations into a sequence of human-understandable symbols). The third part Applications shows how the abstract problems defined in the second part underlie technologies capable to perform complex tasks such as the recognition of hand gestures or the transcription of handwritten data. Machine Learning for Audio, Image and Video Analysis is suitable for students to acquire a solid background in machine learning as well as for practitioners to deepen their knowledge of the state-of-the-art. All application chapters are based on publicly available data and free software packages, thus allowing readers to replicate the experiments.