Machine Learning For Audio Image And Video Analysis
Download Machine Learning For Audio Image And Video Analysis full books in PDF, epub, and Kindle. Read online free Machine Learning For Audio Image And Video Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Francesco Camastra |
Publisher |
: Springer |
Total Pages |
: 564 |
Release |
: 2015-07-21 |
ISBN-10 |
: 9781447167358 |
ISBN-13 |
: 144716735X |
Rating |
: 4/5 (58 Downloads) |
Synopsis Machine Learning for Audio, Image and Video Analysis by : Francesco Camastra
This second edition focuses on audio, image and video data, the three main types of input that machines deal with when interacting with the real world. A set of appendices provides the reader with self-contained introductions to the mathematical background necessary to read the book. Divided into three main parts, From Perception to Computation introduces methodologies aimed at representing the data in forms suitable for computer processing, especially when it comes to audio and images. Whilst the second part, Machine Learning includes an extensive overview of statistical techniques aimed at addressing three main problems, namely classification (automatically assigning a data sample to one of the classes belonging to a predefined set), clustering (automatically grouping data samples according to the similarity of their properties) and sequence analysis (automatically mapping a sequence of observations into a sequence of human-understandable symbols). The third part Applications shows how the abstract problems defined in the second part underlie technologies capable to perform complex tasks such as the recognition of hand gestures or the transcription of handwritten data. Machine Learning for Audio, Image and Video Analysis is suitable for students to acquire a solid background in machine learning as well as for practitioners to deepen their knowledge of the state-of-the-art. All application chapters are based on publicly available data and free software packages, thus allowing readers to replicate the experiments.
Author |
: Yihong Gong |
Publisher |
: Springer |
Total Pages |
: 277 |
Release |
: 2010-02-12 |
ISBN-10 |
: 1441943536 |
ISBN-13 |
: 9781441943538 |
Rating |
: 4/5 (36 Downloads) |
Synopsis Machine Learning for Multimedia Content Analysis by : Yihong Gong
This volume introduces machine learning techniques that are particularly powerful and effective for modeling multimedia data and common tasks of multimedia content analysis. It systematically covers key machine learning techniques in an intuitive fashion and demonstrates their applications through case studies. Coverage includes examples of unsupervised learning, generative models and discriminative models. In addition, the book examines Maximum Margin Markov (M3) networks, which strive to combine the advantages of both the graphical models and Support Vector Machines (SVM).
Author |
: Katy Warr |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 233 |
Release |
: 2019-07-03 |
ISBN-10 |
: 9781492044901 |
ISBN-13 |
: 1492044903 |
Rating |
: 4/5 (01 Downloads) |
Synopsis Strengthening Deep Neural Networks by : Katy Warr
As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process image, audio, and video data. Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If you’re a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone fascinated by the differences between artificial and biological perception, this book is for you. Delve into DNNs and discover how they could be tricked by adversarial input Investigate methods used to generate adversarial input capable of fooling DNNs Explore real-world scenarios and model the adversarial threat Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data Examine some ways in which AI might become better at mimicking human perception in years to come
Author |
: Nicu Sebe |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 253 |
Release |
: 2005-10-04 |
ISBN-10 |
: 9781402032752 |
ISBN-13 |
: 1402032757 |
Rating |
: 4/5 (52 Downloads) |
Synopsis Machine Learning in Computer Vision by : Nicu Sebe
The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.
Author |
: Pradeep Singh |
Publisher |
: John Wiley & Sons |
Total Pages |
: 480 |
Release |
: 2022-02-01 |
ISBN-10 |
: 9781119821885 |
ISBN-13 |
: 1119821886 |
Rating |
: 4/5 (85 Downloads) |
Synopsis Fundamentals and Methods of Machine and Deep Learning by : Pradeep Singh
FUNDAMENTALS AND METHODS OF MACHINE AND DEEP LEARNING The book provides a practical approach by explaining the concepts of machine learning and deep learning algorithms, evaluation of methodology advances, and algorithm demonstrations with applications. Over the past two decades, the field of machine learning and its subfield deep learning have played a main role in software applications development. Also, in recent research studies, they are regarded as one of the disruptive technologies that will transform our future life, business, and the global economy. The recent explosion of digital data in a wide variety of domains, including science, engineering, Internet of Things, biomedical, healthcare, and many business sectors, has declared the era of big data, which cannot be analysed by classical statistics but by the more modern, robust machine learning and deep learning techniques. Since machine learning learns from data rather than by programming hard-coded decision rules, an attempt is being made to use machine learning to make computers that are able to solve problems like human experts in the field. The goal of this book is to present a??practical approach by explaining the concepts of machine learning and deep learning algorithms with applications. Supervised machine learning algorithms, ensemble machine learning algorithms, feature selection, deep learning techniques, and their applications are discussed. Also included in the eighteen chapters is unique information which provides a clear understanding of concepts by using algorithms and case studies illustrated with applications of machine learning and deep learning in different domains, including disease prediction, software defect prediction, online television analysis, medical image processing, etc. Each of the chapters briefly described below provides both a chosen approach and its implementation. Audience Researchers and engineers in artificial intelligence, computer scientists as well as software developers.
Author |
: Alexandros Iosifidis |
Publisher |
: Academic Press |
Total Pages |
: 638 |
Release |
: 2022-02-04 |
ISBN-10 |
: 9780323885720 |
ISBN-13 |
: 0323885721 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Deep Learning for Robot Perception and Cognition by : Alexandros Iosifidis
Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis
Author |
: Jeremy Howard |
Publisher |
: O'Reilly Media |
Total Pages |
: 624 |
Release |
: 2020-06-29 |
ISBN-10 |
: 9781492045496 |
ISBN-13 |
: 1492045497 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Author |
: Li Deng |
Publisher |
: |
Total Pages |
: 212 |
Release |
: 2014 |
ISBN-10 |
: 1601988141 |
ISBN-13 |
: 9781601988140 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Deep Learning by : Li Deng
Provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks
Author |
: Meerja Akhil Jabbar |
Publisher |
: |
Total Pages |
: 250 |
Release |
: 2021-11-30 |
ISBN-10 |
: 8770223696 |
ISBN-13 |
: 9788770223690 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Machine Learning Methods for Signal, Image and Speech Processing by : Meerja Akhil Jabbar
The signal processing (SP) landscape has been enriched by recent advances in artificial intelligence (AI) and machine learning (ML), yielding new tools for signal estimation, classification, prediction, and manipulation. Layered signal representations, nonlinear function approximation and nonlinear signal prediction are now feasible at very large scale in both dimensionality and data size. These are leading to significant performance gains in a variety of long-standing problem domains like speech and image analysis as well as providing the ability to construct new classes of nonlinear functions (e.g., fusion, nonlinear filtering). This book will help academics, researchers, developers, graduate and undergraduate students to comprehend complex SP data across a wide range of topical application areas such as social multimedia data collected from social media networks, medical imaging data, data from Covid tests, etc. This book focuses on AI utilization in the speech, image, communications and virtual reality domains.
Author |
: Halina Kwaśnicka |
Publisher |
: Springer |
Total Pages |
: 171 |
Release |
: 2018-02-20 |
ISBN-10 |
: 9783319738918 |
ISBN-13 |
: 3319738917 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Bridging the Semantic Gap in Image and Video Analysis by : Halina Kwaśnicka
This book presents cutting-edge research on various ways to bridge the semantic gap in image and video analysis. The respective chapters address different stages of image processing, revealing that the first step is a future extraction, the second is a segmentation process, the third is object recognition, and the fourth and last involve the semantic interpretation of the image. The semantic gap is a challenging area of research, and describes the difference between low-level features extracted from the image and the high-level semantic meanings that people can derive from the image. The result greatly depends on lower level vision techniques, such as feature selection, segmentation, object recognition, and so on. The use of deep models has freed humans from manually selecting and extracting the set of features. Deep learning does this automatically, developing more abstract features at the successive levels. The book offers a valuable resource for researchers, practitioners, students and professors in Computer Engineering, Computer Science and related fields whose work involves images, video analysis, image interpretation and so on.