Advanced Topics In Computational Partial Differential Equations
Download Advanced Topics In Computational Partial Differential Equations full books in PDF, epub, and Kindle. Read online free Advanced Topics In Computational Partial Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Hans Petter Langtangen |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 676 |
Release |
: 2012-09-22 |
ISBN-10 |
: 9783642182372 |
ISBN-13 |
: 3642182372 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Advanced Topics in Computational Partial Differential Equations by : Hans Petter Langtangen
A gentle introduction to advanced topics such as parallel computing, multigrid methods, and special methods for systems of PDEs. The goal of all chapters is to ‘compute’ solutions to problems, hence algorithmic and software issues play a central role. All software examples use the Diffpack programming environment - some experience with Diffpack is required. There are also some chapters covering complete applications, i.e., the way from a model, expressed as systems of PDEs, through to discretization methods, algorithms, software design, verification, and computational examples. Suitable for readers with a background in basic finite element and finite difference methods for partial differential equations.
Author |
: Hans Petter Langtangen |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 704 |
Release |
: 2013-04-17 |
ISBN-10 |
: 9783662011706 |
ISBN-13 |
: 3662011700 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Computational Partial Differential Equations by : Hans Petter Langtangen
Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.
Author |
: R.P. Agarwal |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 517 |
Release |
: 2013-04-17 |
ISBN-10 |
: 9789401588997 |
ISBN-13 |
: 9401588996 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Advanced Topics in Difference Equations by : R.P. Agarwal
. The theory of difference equations, the methods used in their solutions and their wide applications have advanced beyond their adolescent stage to occupy a central position in Applicable Analysis. In fact, in the last five years, the proliferation of the subject is witnessed by hundreds of research articles and several monographs, two International Conferences and numerous Special Sessions, and a new Journal as well as several special issues of existing journals, all devoted to the theme of Difference Equations. Now even those experts who believe in the universality of differential equations are discovering the sometimes striking divergence between the continuous and the discrete. There is no doubt that the theory of difference equations will continue to play an important role in mathematics as a whole. In 1992, the first author published a monograph on the subject entitled Difference Equations and Inequalities. This book was an in-depth survey of the field up to the year of publication. Since then, the subject has grown to such an extent that it is now quite impossible for a similar survey, even to cover just the results obtained in the last four years, to be written. In the present monograph, we have collected some of the results which we have obtained in the last few years, as well as some yet unpublished ones.
Author |
: Jichun Li |
Publisher |
: CRC Press |
Total Pages |
: 376 |
Release |
: 2008-10-20 |
ISBN-10 |
: 9781420089059 |
ISBN-13 |
: 1420089056 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Computational Partial Differential Equations Using MATLAB by : Jichun Li
This textbook introduces several major numerical methods for solving various partial differential equations (PDEs) in science and engineering, including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques that include the classic finite difference method and the finite element method as well as state-of-the-art numerical
Author |
: Aslak Tveito |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 402 |
Release |
: 2008-01-21 |
ISBN-10 |
: 9780387227733 |
ISBN-13 |
: 0387227733 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Introduction to Partial Differential Equations by : Aslak Tveito
Combining both the classical theory and numerical techniques for partial differential equations, this thoroughly modern approach shows the significance of computations in PDEs and illustrates the strong interaction between mathematical theory and the development of numerical methods. Great care has been taken throughout the book to seek a sound balance between these techniques. The authors present the material at an easy pace and exercises ranging from the straightforward to the challenging have been included. In addition there are some "projects" suggested, either to refresh the students memory of results needed in this course, or to extend the theories developed in the text. Suitable for undergraduate and graduate students in mathematics and engineering.
Author |
: Alfio Quarteroni |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 551 |
Release |
: 2009-02-11 |
ISBN-10 |
: 9783540852681 |
ISBN-13 |
: 3540852689 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Numerical Approximation of Partial Differential Equations by : Alfio Quarteroni
Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).
Author |
: Hans Petter Langtangen |
Publisher |
: Springer |
Total Pages |
: 684 |
Release |
: 2011-03-30 |
ISBN-10 |
: 3642182380 |
ISBN-13 |
: 9783642182389 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Advanced Topics in Computational Partial Differential Equations by : Hans Petter Langtangen
Author |
: Grant B. Gustafson |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 754 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461206330 |
ISBN-13 |
: 1461206332 |
Rating |
: 4/5 (30 Downloads) |
Synopsis Analytical and Computational Methods of Advanced Engineering Mathematics by : Grant B. Gustafson
This book focuses on the topics which provide the foundation for practicing engineering mathematics: ordinary differential equations, vector calculus, linear algebra and partial differential equations. Destined to become the definitive work in the field, the book uses a practical engineering approach based upon solving equations and incorporates computational techniques throughout.
Author |
: Ed Bueler |
Publisher |
: SIAM |
Total Pages |
: 407 |
Release |
: 2020-10-22 |
ISBN-10 |
: 9781611976311 |
ISBN-13 |
: 1611976316 |
Rating |
: 4/5 (11 Downloads) |
Synopsis PETSc for Partial Differential Equations: Numerical Solutions in C and Python by : Ed Bueler
The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.
Author |
: Sandro Salsa |
Publisher |
: Springer |
Total Pages |
: 714 |
Release |
: 2015-04-24 |
ISBN-10 |
: 9783319150932 |
ISBN-13 |
: 3319150936 |
Rating |
: 4/5 (32 Downloads) |
Synopsis Partial Differential Equations in Action by : Sandro Salsa
The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.