Adoption Of Data Analytics In Higher Education Learning And Teaching
Download Adoption Of Data Analytics In Higher Education Learning And Teaching full books in PDF, epub, and Kindle. Read online free Adoption Of Data Analytics In Higher Education Learning And Teaching ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Dirk Ifenthaler |
Publisher |
: Springer Nature |
Total Pages |
: 464 |
Release |
: 2020-08-10 |
ISBN-10 |
: 9783030473921 |
ISBN-13 |
: 3030473929 |
Rating |
: 4/5 (21 Downloads) |
Synopsis Adoption of Data Analytics in Higher Education Learning and Teaching by : Dirk Ifenthaler
The book aims to advance global knowledge and practice in applying data science to transform higher education learning and teaching to improve personalization, access and effectiveness of education for all. Currently, higher education institutions and involved stakeholders can derive multiple benefits from educational data mining and learning analytics by using different data analytics strategies to produce summative, real-time, and predictive or prescriptive insights and recommendations. Educational data mining refers to the process of extracting useful information out of a large collection of complex educational datasets while learning analytics emphasizes insights and responses to real-time learning processes based on educational information from digital learning environments, administrative systems, and social platforms. This volume provides insight into the emerging paradigms, frameworks, methods and processes of managing change to better facilitate organizational transformation toward implementation of educational data mining and learning analytics. It features current research exploring the (a) theoretical foundation and empirical evidence of the adoption of learning analytics, (b) technological infrastructure and staff capabilities required, as well as (c) case studies that describe current practices and experiences in the use of data analytics in higher education.
Author |
: Jaime Lester |
Publisher |
: John Wiley & Sons |
Total Pages |
: 155 |
Release |
: 2017-12-21 |
ISBN-10 |
: 9781119478461 |
ISBN-13 |
: 1119478464 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Learning Analytics in Higher Education by : Jaime Lester
Learning analytics (or educational big data) tools are increasingly being deployed on campuses to improve student performance, retention and completion, especially when those metrics are tied to funding. Providing personalized, real-time, actionable feedback through mining and analysis of large data sets, learning analytics can illuminate trends and predict future outcomes. While promising, there is limited and mixed empirical evidence related to its efficacy to improve student retention and completion. Further, learning analytics tools are used by a variety of people on campus, and as such, its use in practice may not align with institutional intent. This monograph delves into the research, literature, and issues associated with learning analytics implementation, adoption, and use by individuals within higher education institutions. With it, readers will gain a greater understanding of the potential and challenges related to implementing, adopting, and integrating these systems on their campuses and within their classrooms and advising sessions. This is the fifth issue of the 43rd volume of the Jossey-Bass series ASHE Higher Education Report. Each monograph is the definitive analysis of a tough higher education issue, based on thorough research of pertinent literature and institutional experiences. Topics are identified by a national survey. Noted practitioners and scholars are then commissioned to write the reports, with experts providing critical reviews of each manuscript before publication.
Author |
: Jaime Lester |
Publisher |
: Routledge |
Total Pages |
: 290 |
Release |
: 2018-08-06 |
ISBN-10 |
: 9781351400527 |
ISBN-13 |
: 1351400525 |
Rating |
: 4/5 (27 Downloads) |
Synopsis Learning Analytics in Higher Education by : Jaime Lester
Learning Analytics in Higher Education provides a foundational understanding of how learning analytics is defined, what barriers and opportunities exist, and how it can be used to improve practice, including strategic planning, course development, teaching pedagogy, and student assessment. Well-known contributors provide empirical, theoretical, and practical perspectives on the current use and future potential of learning analytics for student learning and data-driven decision-making, ways to effectively evaluate and research learning analytics, integration of learning analytics into practice, organizational barriers and opportunities for harnessing Big Data to create and support use of these tools, and ethical considerations related to privacy and consent. Designed to give readers a practical and theoretical foundation in learning analytics and how data can support student success in higher education, this book is a valuable resource for scholars and administrators.
Author |
: Samira ElAtia |
Publisher |
: John Wiley & Sons |
Total Pages |
: 351 |
Release |
: 2016-09-20 |
ISBN-10 |
: 9781118998212 |
ISBN-13 |
: 1118998219 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Data Mining and Learning Analytics by : Samira ElAtia
Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research.
Author |
: Information Resources Management Association |
Publisher |
: Engineering Science Reference |
Total Pages |
: 0 |
Release |
: 2022 |
ISBN-10 |
: 1668436620 |
ISBN-13 |
: 9781668436622 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Research Anthology on Big Data Analytics, Architectures, and Applications by : Information Resources Management Association
Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians.
Author |
: Murtaza Haider |
Publisher |
: IBM Press |
Total Pages |
: 942 |
Release |
: 2015-12-14 |
ISBN-10 |
: 9780133991239 |
ISBN-13 |
: 0133991237 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Getting Started with Data Science by : Murtaza Haider
Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy! Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now. Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories. Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing. You’ll master data science by answering fascinating questions, such as: • Are religious individuals more or less likely to have extramarital affairs? • Do attractive professors get better teaching evaluations? • Does the higher price of cigarettes deter smoking? • What determines housing prices more: lot size or the number of bedrooms? • How do teenagers and older people differ in the way they use social media? • Who is more likely to use online dating services? • Why do some purchase iPhones and others Blackberry devices? • Does the presence of children influence a family’s spending on alcohol? For each problem, you’ll walk through defining your question and the answers you’ll need; exploring how others have approached similar challenges; selecting your data and methods; generating your statistics; organizing your report; and telling your story. Throughout, the focus is squarely on what matters most: transforming data into insights that are clear, accurate, and can be acted upon.
Author |
: Maren Scheffel |
Publisher |
: Springer Nature |
Total Pages |
: 798 |
Release |
: 2019-09-09 |
ISBN-10 |
: 9783030297367 |
ISBN-13 |
: 3030297365 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Transforming Learning with Meaningful Technologies by : Maren Scheffel
This book constitutes the proceedings of the 14th European Conference on Technology Enhanced Learning, EC-TEL 2019, held in Delft, The Netherlands, in September 2019. The 41 research papers and 50 demo and poster papers presented in this volume were carefully reviewed and selected from 149 submissions. The contributions reflect the debate around the role of and challenges for cutting-edge 21st century meaningful technologies and advances such as artificial intelligence and robots, augmented reality and ubiquitous computing technologies and at the same time connecting them to different pedagogical approaches, types of learning settings, and application domains that can benefit from such technologies.
Author |
: Ali, Mohammed Banu |
Publisher |
: IGI Global |
Total Pages |
: 270 |
Release |
: 2020-09-04 |
ISBN-10 |
: 9781799848479 |
ISBN-13 |
: 1799848477 |
Rating |
: 4/5 (79 Downloads) |
Synopsis Fostering Communication and Learning With Underutilized Technologies in Higher Education by : Ali, Mohammed Banu
Higher education is undergoing radical changes with the arrival of emerging technology that can facilitate better teaching and learning experiences. However, with a lack of technical awareness, technophobia, and security and trust issues, there are several barriers to the uptake of emerging technologies. As a result, many of these new technologies have been overlooked or underutilized. In the information systems and higher education domains, there exists a need to explore underutilized technologies in higher education that can foster communication and learning. Fostering Communication and Learning With Underutilized Technologies in Higher Education is a critical reference source that provides contemporary theories in the area of technology-driven communication and learning in higher education. The book offers new knowledge about educational technologies and explores such themes as artificial intelligence, digital learning platforms, gamification tools, and interactive exhibits. The target audience includes researchers, academicians, practitioners, and students who are working or have a keen interest in information systems, learning technologies, and technology-led teaching and learning. Moreover, the book provides an understanding and support to higher education practitioners, faculty, educational board members, technology vendors and firms, and the Ministry of Education.
Author |
: Azevedo, Ana |
Publisher |
: IGI Global |
Total Pages |
: 296 |
Release |
: 2021-03-19 |
ISBN-10 |
: 9781799871040 |
ISBN-13 |
: 1799871045 |
Rating |
: 4/5 (40 Downloads) |
Synopsis Advancing the Power of Learning Analytics and Big Data in Education by : Azevedo, Ana
The term learning analytics is used in the context of the use of analytics in e-learning environments. Learning analytics is used to improve quality. It uses data about students and their activities to provide better understanding and to improve student learning. The use of learning management systems, where the activity of the students can be easily accessed, potentiated the use of learning analytics to understand their route during the learning process, help students be aware of their progress, and detect situations where students can give up the course before its completion, which is a growing problem in e-learning environments. Advancing the Power of Learning Analytics and Big Data in Education provides insights concerning the use of learning analytics, the role and impact of analytics on education, and how learning analytics are designed, employed, and assessed. The chapters will discuss factors affecting learning analytics such as human factors, geographical factors, technological factors, and ethical and legal factors. This book is ideal for teachers, administrators, teacher educators, practitioners, stakeholders, researchers, academicians, and students interested in the use of big data and learning analytics for improved student success and educational environments.
Author |
: Susan Vowels |
Publisher |
: CRC Press |
Total Pages |
: 231 |
Release |
: 2019-06-17 |
ISBN-10 |
: 9781351721455 |
ISBN-13 |
: 1351721453 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Teaching Data Analytics by : Susan Vowels
The need for analytics skills is a source of the burgeoning growth in the number of analytics and decision science programs in higher education developed to feed the need for capable employees in this area. The very size and continuing growth of this need means that there is still space for new program development. Schools wishing to pursue business analytics programs intentionally assess the maturity level of their programs and take steps to close the gap. Teaching Data Analytics: Pedagogy and Program Design is a reference for faculty and administrators seeking direction about adding or enhancing analytics offerings at their institutions. It provides guidance by examining best practices from the perspectives of faculty and practitioners. By emphasizing the connection of data analytics to organizational success, it reviews the position of analytics and decision science programs in higher education, and to review the critical connection between this area of study and career opportunities. The book features: A variety of perspectives ranging from the scholarly theoretical to the practitioner applied An in-depth look into a wide breadth of skills from closely technology-focused to robustly soft human connection skills Resources for existing faculty to acquire and maintain additional analytics-relevant skills that can enrich their current course offerings. Acknowledging the dichotomy between data analytics and data science, this book emphasizes data analytics rather than data science, although the book does touch upon the data science realm. Starting with industry perspectives, the book covers the applied world of data analytics, covering necessary skills and applications, as well as developing compelling visualizations. It then dives into pedagogical and program design approaches in data analytics education and concludes with ideas for program design tactics. This reference is a launching point for discussions about how to connect industry’s need for skilled data analysts to higher education’s need to design a rigorous curriculum that promotes student critical thinking, communication, and ethical skills. It also provides insight into adding new elements to existing data analytics courses and for taking the next step in adding data analytics offerings, whether it be incorporating additional analytics assignments into existing courses, offering one course designed for undergraduates, or an integrated program designed for graduate students.