Data Mining And Learning Analytics
Download Data Mining And Learning Analytics full books in PDF, epub, and Kindle. Read online free Data Mining And Learning Analytics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Samira ElAtia |
Publisher |
: John Wiley & Sons |
Total Pages |
: 351 |
Release |
: 2016-09-20 |
ISBN-10 |
: 9781118998212 |
ISBN-13 |
: 1118998219 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Data Mining and Learning Analytics by : Samira ElAtia
Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research.
Author |
: Johann Ari Larusson |
Publisher |
: Springer |
Total Pages |
: 203 |
Release |
: 2014-07-04 |
ISBN-10 |
: 9781461433057 |
ISBN-13 |
: 1461433053 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Learning Analytics by : Johann Ari Larusson
In education today, technology alone doesn't always lead to immediate success for students or institutions. In order to gauge the efficacy of educational technology, we need ways to measure the efficacy of educational practices in their own right. Through a better understanding of how learning takes place, we may work toward establishing best practices for students, educators, and institutions. These goals can be accomplished with learning analytics. Learning Analytics: From Research to Practice updates this emerging field with the latest in theories, findings, strategies, and tools from across education and technological disciplines. Guiding readers through preparation, design, and examples of implementation, this pioneering reference clarifies LA methods as not mere data collection but sophisticated, systems-based analysis with practical applicability inside the classroom and in the larger world. Case studies illustrate applications of LA throughout academic settings (e.g., intervention, advisement, technology design), and their resulting impact on pedagogy and learning. The goal is to bring greater efficiency and deeper engagement to individual students, learning communities, and educators, as chapters show diverse uses of learning analytics to: Enhance student and faculty performance. Improve student understanding of course material. Assess and attend to the needs of struggling learners. Improve accuracy in grading. Allow instructors to assess and develop their own strengths. Encourage more efficient use of resources at the institutional level. Researchers and practitioners in educational technology, IT, and the learning sciences will hail the information in Learning Analytics: From Research to Practice as a springboard to new levels of student, instructor, and institutional success.
Author |
: Mohammed J. Zaki |
Publisher |
: Cambridge University Press |
Total Pages |
: 607 |
Release |
: 2014-05-12 |
ISBN-10 |
: 9780521766333 |
ISBN-13 |
: 0521766338 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Data Mining and Analysis by : Mohammed J. Zaki
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Author |
: Mohammed J. Zaki |
Publisher |
: Cambridge University Press |
Total Pages |
: 779 |
Release |
: 2020-01-30 |
ISBN-10 |
: 9781108473989 |
ISBN-13 |
: 1108473989 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Data Mining and Machine Learning by : Mohammed J. Zaki
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.
Author |
: Azevedo, Ana |
Publisher |
: IGI Global |
Total Pages |
: 296 |
Release |
: 2021-03-19 |
ISBN-10 |
: 9781799871040 |
ISBN-13 |
: 1799871045 |
Rating |
: 4/5 (40 Downloads) |
Synopsis Advancing the Power of Learning Analytics and Big Data in Education by : Azevedo, Ana
The term learning analytics is used in the context of the use of analytics in e-learning environments. Learning analytics is used to improve quality. It uses data about students and their activities to provide better understanding and to improve student learning. The use of learning management systems, where the activity of the students can be easily accessed, potentiated the use of learning analytics to understand their route during the learning process, help students be aware of their progress, and detect situations where students can give up the course before its completion, which is a growing problem in e-learning environments. Advancing the Power of Learning Analytics and Big Data in Education provides insights concerning the use of learning analytics, the role and impact of analytics on education, and how learning analytics are designed, employed, and assessed. The chapters will discuss factors affecting learning analytics such as human factors, geographical factors, technological factors, and ethical and legal factors. This book is ideal for teachers, administrators, teacher educators, practitioners, stakeholders, researchers, academicians, and students interested in the use of big data and learning analytics for improved student success and educational environments.
Author |
: Andre A. Rupp |
Publisher |
: John Wiley & Sons |
Total Pages |
: 792 |
Release |
: 2016-11-21 |
ISBN-10 |
: 9781118956618 |
ISBN-13 |
: 1118956613 |
Rating |
: 4/5 (18 Downloads) |
Synopsis The Wiley Handbook of Cognition and Assessment by : Andre A. Rupp
This state-of-the-art resource brings together the most innovative scholars and thinkers in the field of testing to capture the changing conceptual, methodological, and applied landscape of cognitively-grounded educational assessments. Offers a methodologically-rigorous review of cognitive and learning sciences models for testing purposes, as well as the latest statistical and technological know-how for designing, scoring, and interpreting results Written by an international team of contributors at the cutting-edge of cognitive psychology and educational measurement under the editorship of a research director at the Educational Testing Service and an esteemed professor of educational psychology at the University of Alberta as well as supported by an expert advisory board Covers conceptual frameworks, modern methodologies, and applied topics, in a style and at a level of technical detail that will appeal to a wide range of readers from both applied and scientific backgrounds Considers emerging topics in cognitively-grounded assessment, including applications of emerging socio-cognitive models, cognitive models for human and automated scoring, and various innovative virtual performance assessments
Author |
: Vijay Kotu |
Publisher |
: Morgan Kaufmann |
Total Pages |
: 447 |
Release |
: 2014-11-27 |
ISBN-10 |
: 9780128016503 |
ISBN-13 |
: 0128016507 |
Rating |
: 4/5 (03 Downloads) |
Synopsis Predictive Analytics and Data Mining by : Vijay Kotu
Put Predictive Analytics into ActionLearn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining.You’ll be able to:1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process.2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases.3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples
Author |
: Bruce Ratner |
Publisher |
: CRC Press |
Total Pages |
: 690 |
Release |
: 2017-07-12 |
ISBN-10 |
: 9781498797610 |
ISBN-13 |
: 149879761X |
Rating |
: 4/5 (10 Downloads) |
Synopsis Statistical and Machine-Learning Data Mining: by : Bruce Ratner
Interest in predictive analytics of big data has grown exponentially in the four years since the publication of Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data, Second Edition. In the third edition of this bestseller, the author has completely revised, reorganized, and repositioned the original chapters and produced 13 new chapters of creative and useful machine-learning data mining techniques. In sum, the 43 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. What is new in the Third Edition: The current chapters have been completely rewritten. The core content has been extended with strategies and methods for problems drawn from the top predictive analytics conference and statistical modeling workshops. Adds thirteen new chapters including coverage of data science and its rise, market share estimation, share of wallet modeling without survey data, latent market segmentation, statistical regression modeling that deals with incomplete data, decile analysis assessment in terms of the predictive power of the data, and a user-friendly version of text mining, not requiring an advanced background in natural language processing (NLP). Includes SAS subroutines which can be easily converted to other languages. As in the previous edition, this book offers detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. The author addresses each methodology and assigns its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.
Author |
: Kris Jamsa |
Publisher |
: Jones & Bartlett Learning |
Total Pages |
: 687 |
Release |
: 2020-02-03 |
ISBN-10 |
: 9781284210484 |
ISBN-13 |
: 1284210480 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Introduction to Data Mining and Analytics by : Kris Jamsa
Data Mining and Analytics provides a broad and interactive overview of a rapidly growing field. The exponentially increasing rate at which data is generated creates a corresponding need for professionals who can effectively handle its storage, analysis, and translation.
Author |
: Bruce Ratner |
Publisher |
: CRC Press |
Total Pages |
: 544 |
Release |
: 2012-02-28 |
ISBN-10 |
: 9781466551213 |
ISBN-13 |
: 1466551216 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Statistical and Machine-Learning Data Mining by : Bruce Ratner
The second edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. The first edition, titled Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data, contained 17 chapters of innovative and practical statistical data mining techniques. In this second edition, renamed to reflect the increased coverage of machine-learning data mining techniques, the author has completely revised, reorganized, and repositioned the original chapters and produced 14 new chapters of creative and useful machine-learning data mining techniques. In sum, the 31 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. The statistical data mining methods effectively consider big data for identifying structures (variables) with the appropriate predictive power in order to yield reliable and robust large-scale statistical models and analyses. In contrast, the author's own GenIQ Model provides machine-learning solutions to common and virtually unapproachable statistical problems. GenIQ makes this possible — its utilitarian data mining features start where statistical data mining stops. This book contains essays offering detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. They address each methodology and assign its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.